Yu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1068787/publications.pdf

Version: 2024-02-01

249298 242451 2,371 67 26 47 citations h-index g-index papers 69 69 69 4844 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Vertical Heterogeneous Integration of Metal Halide Perovskite Quantum-Wires/Nanowires for Flexible Narrowband Photodetectors. Nano Letters, 2022, 22, 3062-3070.	4.5	18
2	Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100, 107516.	8.2	33
3	Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Letters, 2022, 22, 5944-5953.	4.5	36
4	A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. Journal of Energy Chemistry, 2021, 59, 730-735.	7.1	16
5	Three-dimensional perovskite nanowire array–based ultrafast resistive RAM with ultralong data retention. Science Advances, 2021, 7, eabg3788.	4.7	29
6	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
7	Enhanced Photocatalytic Property of Î ³ -CsPbl ₃ Perovskite Nanocrystals with WS ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 1219-1229.	3.2	33
8	Metal Nanoparticle Harvesting by Continuous Rotating Electrodeposition and Separation. Matter, 2020, 3, 1294-1307.	5.0	11
9	Evidence for Interfacial Octahedral Coupling as a Route to Enhance Magnetoresistance in Perovskite Oxide Superlattices. Advanced Materials Interfaces, 2020, 7, 1901576.	1.9	8
10	Rapid Fabrication, Microstructure, and in Vitro and in Vivo Investigations of a High-Performance Multilayer Coating with External, Flexible, and Silicon-Doped Hydroxyapatite Nanorods on Titanium. ACS Biomaterials Science and Engineering, 2019, 5, 4244-4262.	2.6	10
11	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	3.1	30
12	High Efficient Large-area Perovskite Solar Cells Based on Paintable Carbon Electrode with NiO Nanocrystal-carbon Intermediate Layer. Chemistry Letters, 2019, 48, 734-737.	0.7	8
13	All Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cell by Using Highâ€Boilingâ€Point Solvent Treated Ballâ€Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 2019, 4, 982-989.	0.7	4
14	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	5.2	62
15	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	5.2	67
16	Allâ€Layer Sputteringâ€Free Cu2Zn1â€xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 2019, 4, 5979-5983.	0.7	1
17	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	3.1	27
18	<i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682.	5.2	63

#	Article	IF	Citations
19	Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341.	5.2	44
20	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1970115.	3.1	1
21	Reduced Graphene Oxide/CZTS _x Se _{1â€x} Composites as a Novel Holeâ€Transport Functional Layer in Perovskite Solar Cells. ChemElectroChem, 2019, 6, 1500-1507.	1.7	9
22	Efficient Inorganic Cesium Lead Mixedâ€Halide Perovskite Solar Cells Prepared by Flashâ€Evaporation Printing. Energy Technology, 2019, 7, 1800986.	1.8	7
23	Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2019, 361, 60-66.	6.6	39
24	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25
25	Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	7.8	242
26	Novel Design for Flexible Quasi-solid-state Dye-sensitized Solar Cells Based on Heat-resistant Glass Paper. Chemistry Letters, 2018, 47, 377-380.	0.7	4
27	Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437, 227-232.	3.1	25
28	Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17861-17870.	4.0	29
29	Perovskite Solar Cells: Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells (Adv.) Tj ETQq1 1	l 0.78431 7:8	4 ggBT /Ove
30	Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42328-42334.	4.0	37
31	Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. Journal of Materials Chemistry A, 2018, 6, 20702-20711.	5.2	22
32	Realizing zinc-doping of CdS buffer layer via partial electrolyte treatment to improve the efficiency of Cu2ZnSnS4 solar cells. Chemical Engineering Journal, 2018, 351, 791-798.	6.6	11
33	Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. ChemistrySelect, 2018, 3, 6802-6809.	0.7	13
34	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e180101	65.2	111
35	The effect of applied voltages on the structure, apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface. Bioactive Materials, 2018, 3, 426-433.	8.6	40
36	Laser-Induced Flash-Evaporation Printing CH ₃ NH ₃ Pbl ₃ Thin Films for High-Performance Planar Solar Cells. ACS Applied Materials & English Representation (2006-26212).	4.0	10

#	Article	IF	CITATIONS
37	Role of alkyl chain length in diaminoalkane linked 2D Ruddlesden–Popper halide perovskites. CrystEngComm, 2018, 20, 6704-6712.	1.3	25
38	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31384-31393.	4.0	68
39	Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Materials Science and Engineering C, 2017, 76, 908-917.	3.8	24
40	High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiO _{<i>x</i>} Hole Contact. ACS Applied Materials & Interfaces, 2017, 9, 2439-2448.	4.0	139
41	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€Inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	7.8	132
42	Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH ₃ NH ₃ PbI ₃ . Small, 2017, 13, 1700953.	5.2	73
43	A space-time multi-input-multi-output system framework for touchable communication. , 2017, , .		0
44	Simulation framework for touchable communication on NS3Sim., 2017,,.		1
45	Concurrent Covalent and Supramolecular Polymerization. Chemistry - A European Journal, 2016, 22, 12301-12306.	1.7	16
46	Synergistic effects of elastic modulus and surface topology of Ti-based implants on early osseointegration. RSC Advances, 2016, 6, 43685-43696.	1.7	20
47	Liquid-Phase Beam Pen Lithography. Small, 2016, 12, 988-993.	5.2	15
48	Supramolecular Gelation of Rigid Triangular Macrocycles through Rings of Multiple C–H···O Interactions Acting Cooperatively. Journal of Organic Chemistry, 2016, 81, 2581-2588.	1.7	27
49	Biodegradable DNAâ€Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agentâ€Free Intracellular Gene Regulation. Small, 2015, 11, 5360-5368.	5 . 2	64
50	Onâ€Tip Photoâ€Modulated Molecular Printing. Angewandte Chemie - International Edition, 2015, 54, 12894-12899.	7.2	20
51	Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Letters, 2015, 15, 4699-4703.	4.5	128
52	Apertureless Cantilever-Free Pen Arrays for Scanning Photochemical Printing. Small, 2015, 11, 913-918.	5.2	39
53	Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Applied Physics A: Materials Science and Processing, 2015, 118, 989-996.	1.1	37
54	The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface. Materials Science and Engineering C, 2015, 49, 669-680.	3.8	17

#	Article	IF	CITATIONS
55	Titania nanotube/nano-brushite composited bioactive coating with micro/nanotopography on titanium formed by anodic oxidation and hydrothermal treatment. Ceramics International, 2015, 41, 13115-13125.	2.3	12
56	Synergistic Effects of Surface Chemistry and Topologic Structure from Modified Microarc Oxidation Coatings on Ti Implants for Improving Osseointegration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8932-8941.	4.0	74
57	p15RS/RPRD1A (p15INK4b-related Sequence/Regulation of Nuclear Pre-mRNA Domain-containing Protein) Tj ETC	Qq1 1 0.78 1.6	34314 rgBT (34
58	H ₂ Ti ₅ O ₁₁ · H ₂ O nanorod arrays formed on a Ti surface via a hybrid technique of microarc oxidation and chemical treatment. CrystEngComm, 2015, 17, 2705-2717.	1.3	9
59	Conformal coating containing Ca, P, Si and Na with double-level porous surface structure on titanium formed by a three-step microarc oxidation. RSC Advances, 2015, 5, 28908-28920.	1.7	16
60	ICONE23-1538 CREEP-FATIGUE DAMAGE EVALUATION OF NI-BASED SUPERALLOY INCONEL 617 BASED ON FINITE ELEMENT ANALYSIS. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-1ICONE23-1.	0.0	1
61	Hydrothermal synthesis of a novel BiErWO6 photocatalyst with wide spectral responsive property. Applied Surface Science, 2014, 319, 250-255.	3.1	12
62	Shape-Selective Deposition and Assembly of Anisotropic Nanoparticles. Nano Letters, 2014, 14, 2157-2161.	4.5	101
63	MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal composite coating prepared by microarc oxidation on titanium. Materials Science and Engineering C, 2014, 39, 186-195.	3.8	23
64	Synthesis and characterization of ferroelectric SrBi2Ta2O9 nanotubes arrays. Journal of Sol-Gel Science and Technology, 2009, 52, 120-123.	1.1	15
65	Characterization of In-Use Light-Duty Gasoline Vehicle Emissions by Remote Sensing in Beijing: Impact of Recent Control Measures. Journal of the Air and Waste Management Association, 2007, 57, 1071-1077.	0.9	15
66	Effect of Polycarbosilane Content on Microstructures and Mechanical Properties of Short-Carbon-Fibre-Reinforced SiC Composites. Advanced Composites Letters, 2006, 15, 096369350601500.	1.3	0
67	Preparation and properties of SrBi2.2 Ta2O9 thin film. Central South University, 2005, 12, 376-379.	0.5	1