
MirosÅ,aw Dolata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1068567/publications.pdf Version: 2024-02-01

Μιροςά ΑΝΟ ΠΟΙΑΤΑ

#	Article	IF	CITATIONS
1	Visible-light activation of low-cost rutile TiO2 photoanodes for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2020, 208, 110424.	6.2	13
2	Analysis of Existing Thermodynamic Models of the Liquid Drop Deposited on the Substrate—A Sufficient Condition of the Minimum Free Energy of the System. Coatings, 2019, 9, 791.	2.6	2
3	Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures. Micromachines, 2018, 9, 469.	2.9	11
4	Simultaneous Measurement of Viscosity and Optical Density of Bacterial Growth and Death in a Microdroplet. Micromachines, 2018, 9, 251.	2.9	13
5	Nanoporous WO ₃ – Fe ₂ O ₃ films; structural and photo-electrochemical characterization. Functional Materials Letters, 2014, 07, 1440006.	1.2	9
6	Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications. Materials Science and Engineering C, 2011, 31, 906-914.	7.3	112
7	Raman investigations of TiO ₂ nanotube substrates covered with thin Ag or Cu deposits. Journal of Raman Spectroscopy, 2009, 40, 1652-1656.	2.5	36
8	Passivity and its breakdown in Al-based amorphous alloys. Materials Chemistry and Physics, 2005, 92, 348-353.	4.0	17
9	Kramers-Kronig Transforms as Validation of Electrochemical Immittance Data Near Discontinuity. Journal of the Electrochemical Society, 2004, 151, E20.	2.9	35
10	Local characterisation of inhomogeneous Cu surfaces by surface-enhanced Raman scattering. Surface Science, 2002, 507-510, 441-446.	1.9	15
11	Modification of surface activity of Cu-based amorphous alloys by chemical processes of metal degradation. Applied Catalysis A: General, 2002, 235, 157-170.	4.3	23
12	Electrochemical modification of Cu–Zr amorphous alloys for catalysts. Electrochimica Acta, 2000, 45, 3295-3304.	5.2	16
13	Surface-enhanced Raman scattering (SERS) on copper electrodeposited under nonequilibrium conditions. Journal of Molecular Structure, 1999, 482-483, 245-248.	3.6	30
14	Effect of electrochemical pretreatment on SERS and catalytic activity of Cu–Zr amorphous alloys. Applied Catalysis A: General, 1999, 181, 123-130.	4.3	17
15	Modification of surface activity of Cu–Zr amorphous alloys and Cu metal by electrochemical methods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 227-234.	5.6	10
16	Surface-enhanced Raman scattering (SERS) on modified amorphous Cu–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 267, 235-239.	5.6	16
17	Heat and momentum transfer in fluids heated in tubes with turbulence generators at moderate Prandtl and Reynolds numbers. International Journal of Heat and Mass Transfer, 1999, 42, 613-627.	4.8	2
18	Effect of electrochemical pretreatment on catalytic activity of Cu–Zr amorphous alloys. Materials Chemistry and Physics, 1998, 57, 186-189.	4.0	3

MirosÅ,aw Dolata

#	Article	IF	CITATIONS
19	Surface-enhanced Raman scattering (SERS) at Copper(I) oxide. Journal of Raman Spectroscopy, 1998, 29, 431-435.	2.5	79
20	Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering. Vibrational Spectroscopy, 1998, 16, 21-29.	2.2	47
21	Comparative impedance spectroscopy study of rutile and anatase Tio2 film electrodes. Electrochimica Acta, 1996, 41, 1287-1293.	5.2	52
22	Photoelectrochemical studies pertaining to the activity of TiO2 towards photodegradation of organic compounds. Journal of Electroanalytical Chemistry, 1995, 396, 41-51.	3.8	60
23	Heat and momentum transfer in gas flowing through heated tube equipped with turbulence promoters. International Journal of Heat and Mass Transfer, 1994, 37, 1839-1848.	4.8	4
24	APPLICATION OF TURBULENCE PROMOTERS FOR OPTIMIZATION OF A GAS HEAT EXCHANGER. Chemical Engineering Communications, 1982, 18, 121-135.	2.6	1