Bulent Duz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10684365/publications.pdf

Version: 2024-02-01

		933447	1125743	
18	179	10	13	
papers	citations	h-index	g-index	
19	19	19	108	
17	1)	13	100	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Metal-Containing Polymers Synthesized via Acyclic Diene Metathesis (ADMET) Polymerization Using Electrochemically Reduced Tungsten-Based Catalyst: Polycarbogermanes. Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16, 115-122.	3.7	19
2	Ring-opening metathesis polymerization of cyclododecene using an electrochemically reduced tungsten-based catalyst. Applied Organometallic Chemistry, 2004, 18, 375-379.	3 . 5	18
3	Metal-containing Polymers Synthesized via Acyclic Diene Metathesis (ADMET) Polymerization Using Electrochemically-Reduced Tungsten-based Catalyst: Polycarbosilanes. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 517-523.	3.7	18
4	Electrochemically generated tungsten-based active species as catalysts for metathesis-related reactions: 1. Acyclic diene metathesis polymerization of 1,9-decadiene. Applied Organometallic Chemistry, 2003, 17, 23-27.	3.5	15
5	Synthesis and characterization of polyoctenamer with WCl6eâ^ʾAlCH2Cl2catalyst system via ring-opening metathesis polymerization. Applied Organometallic Chemistry, 2005, 19, 347-351.	3.5	13
6	Application of carbon arcâ€generated Mo―and Wâ€based catalyst systems to the ROMP of norbornene. Applied Organometallic Chemistry, 2009, 23, 359-364.	3.5	13
7	The WCl6–eâ^³â€"Al–CH2Cl2 catalyzed polypentenamer formation via ring-opening metathesis polymerization (ROMP). European Polymer Journal, 2006, 42, 368-374.	5.4	12
8	Electrochemically reduced tungsten-based active species as catalysts for cross-metathesis reactions: cross-metathesis of non-functionalized olefins. Applied Organometallic Chemistry, 2003, 17, 232-235.	3.5	10
9	Trapping of a cycloheptatetraene in the reaction of atomic carbon with phenol. Tetrahedron Letters, 2003, 44, 3405-3407.	1.4	10
10	Electrochemically generated catalyst system with increased specificity and efficiency for olefin metathesis. Journal of Organometallic Chemistry, 2003, 684, 77-81.	1.8	10
11	Electrochemically generated tungsten-based active species as catalysts for metathesis-related reactions: 2. Ring-opening metathesis polymerization of norbornene. Applied Organometallic Chemistry, 2004, 18, 130-134.	3.5	10
12	Application of electrochemically generated molybdenum-based catalyst system to the ring-opening metathesis polymerization of norbornene and a comparison with the tungsten analogue. Applied Organometallic Chemistry, 2005, 19, 834-840.	3 . 5	8
13	The first example of tungsten-based carbene generation from WCl6 and atomic carbon and its use in olefin metathesis. Tetrahedron Letters, 2006, 47, 5167-5170.	1.4	7
14	Electrochemically reduced tungsten-based active species as catalysts for cross-metathesis reactions: cross-metathesis of erucic acid with 2-octene. Applied Organometallic Chemistry, 2004, 18, 19-22.	3 . 5	6
15	DFT Study of the 1-Octene Metathesis Reaction Mechanism with WCl6/C Catalytic System. Journal of Physical Chemistry A, 2008, 112, 4636-4643.	2.5	3
16	ADMET Polymerization Activities of Electrochemically Reduced W-Based Active Species for Ge- and Sn-Containing Dienes. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 361-365.	0.1	1
17	Intramolecular Trapping of Strained Bicyclic Allene in Carbon Atom Reactions. , 2003, , 309-312.		1
18	Reactions of Atomic Carbon with 2-Norbornene., 2003,, 303-308.		0