Martin Sommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10684089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet, The, 2002, 360, 380-383.	6.3	365
2	Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neuroscience Letters, 2000, 287, 37-40.	1.0	175
3	Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clinical Neurophysiology, 2006, 117, 838-844.	0.7	169
4	What Causes Stuttering?. PLoS Biology, 2004, 2, e46.	2.6	101
5	Consensus: New methodologies for brain stimulation. Brain Stimulation, 2009, 2, 2-13.	0.7	100
6	Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?. NeuroReport, 2002, 13, 809-811.	0.6	87
7	Comparative assessment of best conventional with best theta burst repetitive transcranial magnetic stimulation protocols on human motor cortex excitability. Clinical Neurophysiology, 2008, 119, 1393-1399.	0.7	85
8	Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Movement Disorders, 2002, 17, 1017-1025.	2.2	78
9	Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain, 2018, 141, 191-204.	3.7	76
10	Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. NeuroImage, 2016, 142, 628-644.	2.1	60
11	Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson's disease. Clinical Neurophysiology, 2002, 113, 944-950.	0.7	58
12	Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Brain, 2015, 138, 712-725.	3.7	54
13	TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones. Brain Stimulation, 2018, 11, 558-565.	0.7	54
14	Right-shift for non-speech motor processing in adults who stutter. Cortex, 2011, 47, 945-954.	1.1	50
15	Opposite Optimal Current Flow Directions for Induction of Neuroplasticity and Excitation Threshold in the Human Motor Cortex. Brain Stimulation, 2013, 6, 363-370.	0.7	50
16	Orientation-specific fast rTMS maximizes corticospinal inhibition and facilitation. Experimental Brain Research, 2005, 164, 323-333.	0.7	49
17	Dopaminergic Potentiation of rTMS-Induced Motor Cortex Inhibition. Biological Psychiatry, 2008, 63, 231-233.	0.7	49
18	Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 2002, 13, 2229-2223.	0.6	40

MARTIN SOMMER

#	Article	lF	CITATIONS
19	H-coil: Induced electric field properties and input/output curves on healthy volunteers, comparison with a standard figure-of-eight coil. Clinical Neurophysiology, 2009, 120, 1174-1182.	0.7	38
20	Training Effects Outweigh Effects of Single-Session Conventional rTMS and Theta Burst Stimulation in PD Patients. Neurorehabilitation and Neural Repair, 2009, 23, 373-381.	1.4	36
21	Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis. Journal of Neurology, 1999, 246, III22-III26.	1.8	34
22	Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex. Experimental Brain Research, 2001, 139, 465-472.	0.7	31
23	Normal intracortical excitability in developmental stuttering. Movement Disorders, 2003, 18, 826-830.	2.2	30
24	Time Course of Determination of Movement Direction in the Reaction Time Task in Humans. Journal of Neurophysiology, 2001, 86, 1195-1201.	0.9	23
25	Reduced Speech Perceptual Acuity for Stop Consonants in Individuals Who Stutter. Journal of Speech, Language, and Hearing Research, 2012, 55, 276-289.	0.7	21
26	Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Structure and Function, 2018, 223, 165-182.	1.2	18
27	Normal interhemispheric inhibition in persistent developmental stuttering. Movement Disorders, 2009, 24, 769-773.	2.2	17
28	The Pathogenesis, Assessment and Treatment of Speech Fluency Disorders. Deutsches Ärzteblatt International, 2017, 114, 383-390.	0.6	17
29	Carbamazepine reduces short-interval interhemispheric inhibition in healthy humans. Clinical Neurophysiology, 2012, 123, 351-357.	0.7	15
30	Altered morphology of the nucleus accumbens in persistent developmental stuttering. Journal of Fluency Disorders, 2018, 55, 84-93.	0.7	15
31	Chapter 4 Pulse configuration and rTMS efficacy: a review of clinical studies. Supplements To Clinical Neurophysiology, 2003, 56, 33-41.	2.1	14
32	Strength-Duration Relationship in Paired-pulse Transcranial Magnetic Stimulation (TMS) and Its Implications for Repetitive TMS. Brain Stimulation, 2016, 9, 755-761.	0.7	14
33	Prevalence and Therapy Rates for Stuttering, Cluttering, and Developmental Disorders of Speech and Language: Evaluation of German Health Insurance Data. Frontiers in Human Neuroscience, 2021, 15, 645292.	1.0	13
34	Impairment of eyeblink classical conditioning in progressive supranuclear palsy. Movement Disorders, 2001, 16, 240-251.	2.2	12
35	Premonitory Awareness in Stuttering Scale (PAiS). Journal of Fluency Disorders, 2016, 49, 40-50.	0.7	12
36	Current direction-dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS). Neuroscience Letters, 2017, 650, 109-113.	1.0	11

MARTIN SOMMER

#	Article	IF	CITATIONS
37	The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation. Physiological Reports, 2016, 4, e12666.	0.7	10
38	Two cortical representations of voice control are differentially involved in speech fluency. Brain Communications, 2021, 3, fcaa232.	1.5	9
39	Mechanisms of human motor cortex facilitation induced by subthreshold 5-Hz repetitive transcranial magnetic stimulation. Journal of Neurophysiology, 2013, 109, 3060-3066.	0.9	8
40	Enlarged Area of Mesencephalic Iron Deposits in Adults Who Stutter. Frontiers in Human Neuroscience, 2021, 15, 639269.	1.0	8
41	Adults who stutter lack the specialised pre-speech facilitation found in non-stutterers. PLoS ONE, 2018, 13, e0202634.	1.1	7
42	Stuttering severity relates to frontotemporal low-beta synchronization during pre-speech preparation. Clinical Neurophysiology, 2022, 138, 84-96.	0.7	6
43	Increased transcranial magnetic motor threshold after ECT. European Archives of Psychiatry and Clinical Neuroscience, 2002, 252, 250-252.	1.8	5
44	Fluency shaping increases integration of the command-to-execution and the auditory-to-motor pathways in persistent developmental stuttering. NeuroImage, 2021, 245, 118736.	2.1	5
45	White matter connectivity in neonates at risk of stuttering: Preliminary data. Neuroscience Letters, 2022, 781, 136655.	1.0	5
46	Reply to "Motor evoked potential latency, motor threshold and electric field measurements as indices of transcranial magnetic stimulation depth― Clinical Neurophysiology, 2010, 121, 258-259.	0.7	4
47	Impairment of brainstem implicit learning paradigms differentiates multiple system atrophy (MSA) from idiopathic Parkinson syndrome. BMJ Open, 2013, 3, e003098.	0.8	4
48	Effect of Pulse Duration and Direction on Plasticity Induced by 5 Hz Repetitive Transcranial Magnetic Stimulation in Correlation With Neuronal Depolarization. Frontiers in Neuroscience, 2021, 15, 773792.	1.4	4
49	White matter tract strength correlates with therapy outcome in persistent developmental stuttering. Human Brain Mapping, 2022, 43, 3357-3374.	1.9	3
50	Inverse correlation of intracortical inhibition and brain-stem inhibition in humans. Clinical Neurophysiology, 2002, 113, 120-123.	0.7	2
51	Hand Motor Cortex Excitability During Speaking in Persistent Developmental Stuttering. Frontiers in Human Neuroscience, 2019, 13, 349.	1.0	2
52	Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis. Journal of Neurology, 1999, 246, s022-s026.	1.8	2
53	An unexpected iron in the fire of speech production. Brain, 2021, 144, 2904-2905.	3.7	1
54	Physiological Basis of Transcranial Magnetic Stimulation. Frontiers in Neuroscience, 2012, , 41-54.	0.0	0

#	Article	IF	CITATIONS
55	Bewegungsst¶rungen. , 2007, , 583-591.		0