List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1068368/publications.pdf Version: 2024-02-01

Κ ΜΑΝΑΛΤΑΡΙ

#	Article	IF	CITATIONS
1	Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Scientific Reports, 2015, 5, 11141.	1.6	464
2	Nanostructured WO ₃ /BiVO ₄ Photoanodes for Efficient Photoelectrochemical Water Splitting. Small, 2014, 10, 3692-3699.	5.2	217
3	Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch. Science, 2016, 352, 1559-1562.	6.0	173
4	Extended-Nanofluidics: Fundamental Technologies, Unique Liquid Properties, and Application in Chemical and Bio Analysis Methods and Devices. Analytical Chemistry, 2014, 86, 4068-4077.	3.2	108
5	NMR Studies of Structure and Dynamics of Liquid Molecules Confined in Extended Nanospaces. Journal of Physical Chemistry B, 2009, 113, 10808-10816.	1.2	95
6	Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion. Journal of Physical Chemistry Letters, 2012, 3, 2447-2452.	2.1	94
7	Integrated extended-nano chemical systems on a chip. Chemical Society Reviews, 2010, 39, 1000.	18.7	92
8	Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab on A Chip, 2010, 10, 1262.	3.1	90
9	Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction. Analytical and Bioanalytical Chemistry, 2008, 391, 2745-2752.	1.9	85
10	Individual Detection of Single-Nanometer-Sized Particles in Liquid by Photothermal Microscope. Analytical Chemistry, 1998, 70, 5037-5041.	3.2	84
11	Parallel multiphase microflows: fundamental physics, stabilization methods and applications. Lab on A Chip, 2009, 9, 2470.	3.1	82
12	A micro-ELISA system for the rapid and sensitive measurement of total and specific immunoglobulin E and clinical application to allergy diagnosis. Lab on A Chip, 2009, 9, 991.	3.1	81
13	Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. Lab on A Chip, 2013, 13, 1048.	3.1	81
14	Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Analytical and Bioanalytical Chemistry, 2012, 402, 1011-1018.	1.9	80
15	Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials, 2009, 30, 1413-1420.	5.7	77
16	Extended Nanofluidic Immunochemical Reaction with Femtoliter Sample Volumes. Small, 2014, 10, 1514-1522.	5.2	69
17	Enhancement of Proton Mobility in Extendedâ€Nanospace Channels. Angewandte Chemie - International Edition, 2012, 51, 3573-3577.	7.2	67
18	Femto Liquid Chromatography with Attoliter Sample Separation in the Extended Nanospace Channel. Analytical Chemistry, 2010, 82, 543-547.	3.2	66

K MAWATARI

#	Article	IF	CITATIONS
19	Micro-multiphase laminar flows for the extraction and detection of carbaryl derivative. Analytica Chimica Acta, 2006, 558, 69-74.	2.6	65
20	Highly Efficient and Ultraâ€small Volume Separation by Pressureâ€Driven Liquid Chromatography in Extended Nanochannels. Small, 2012, 8, 1237-1242.	5.2	64
21	Microfluidic extraction of copper from particle-laden solutions. International Journal of Mineral Processing, 2011, 98, 168-173.	2.6	55
22	UV Excitation Thermal Lens Microscope for Sensitive and Nonlabeled Detection of Nonfluorescent Molecules. Analytical Chemistry, 2006, 78, 2859-2863.	3.2	52
23	Rapid analysis of methamphetamine in hair by micropulverized extraction and microchip-based competitive ELISA. Forensic Science International, 2009, 184, 1-5.	1.3	52
24	A single-molecule ELISA device utilizing nanofluidics. Analyst, The, 2018, 143, 943-948.	1.7	52
25	The absence of [C <scp>ii</scp>] 158 \$mu\$m emission in spectroscopically confirmed galaxies at <i>z</i> > 8. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L81-L85.	1.2	52
26	A Microfluidic Hydrogel Capable of Cell Preservation without Perfusion Culture under Cellâ€Based Assay Conditions. Advanced Materials, 2010, 22, 3017-3021.	11.1	51
27	Development of a Measurement Technique for Ion Distribution in an Extended Nanochannel by Super-Resolution-Laser-Induced Fluorescence. Analytical Chemistry, 2011, 83, 8152-8157.	3.2	51
28	Streaming potential/current measurement system for investigation of liquids confined in extended-nanospace. Lab on A Chip, 2010, 10, 871.	3.1	48
29	Microchip-based cell analysis and clinical diagnosis system. Lab on A Chip, 2008, 8, 1992.	3.1	47
30	Sensitive Determination of Concentration of Nonfluorescent Species in an Extended-Nano Channel by Differential Interference Contrast Thermal Lens Microscope. Analytical Chemistry, 2010, 82, 7479-7484.	3.2	47
31	Contribution of Soluble Forms of Programmed Death 1 and Programmed Death Ligand 2 to Disease Severity and Progression in Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 1879-1890.	2.9	47
32	Microfluidic Distillation Utilizing Micro–Nano Combined Structure. Chemistry Letters, 2008, 37, 1064-1065.	0.7	46
33	Femtoliter Droplet Handling in Nanofluidic Channels: A Laplace Nanovalve. Analytical Chemistry, 2012, 84, 10812-10816.	3.2	46
34	Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process. Journal of Flow Chemistry, 2012, 1, 3-12.	1.2	43
35	Evanescent Wave-Based Particle Tracking Velocimetry for Nanochannel Flows. Analytical Chemistry, 2013, 85, 10780-10786.	3.2	43
36	Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Analytical and Bioanalytical Chemistry, 2012, 402, 99-107.	1.9	41

#	Article	IF	CITATIONS
37	Development of a Differential Interference Contrast Thermal Lens Microscope for Sensitive Individual Nanoparticle Detection in Liquid. Analytical Chemistry, 2009, 81, 9802-9806.	3.2	39
38	Circular Dichroism Thermal Lens Microscope for Sensitive Chiral Analysis on Microchip. Analytical Chemistry, 2006, 78, 2646-2650.	3.2	38
39	Micro OS-ELISA: Rapid noncompetitive detection of a small biomarkerpeptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab on A Chip, 2010, 10, 92-100.	3.1	38
40	A palmtopâ€sized microfluidic cell culture system driven by a miniaturized infusion pump. Electrophoresis, 2012, 33, 1729-1735.	1.3	38
41	Cell sheet mechanics: How geometrical constraints induce the detachment of cell sheets from concave surfaces. Acta Biomaterialia, 2016, 45, 85-97.	4.1	38
42	An efficient surface modification using 2-methacryloyloxyethyl phosphorylcholine to control cell attachment via photochemical reaction in a microchannel. Lab on A Chip, 2010, 10, 1937.	3.1	37
43	Dielectric Constant of Liquids Confined in the Extended Nanospace Measured by a Streaming Potential Method. Analytical Chemistry, 2015, 87, 1475-1479.	3.2	37
44	Phase separation of gas–liquid and liquid–liquid microflows in microchips. Mikrochimica Acta, 2009, 164, 249-255.	2.5	36
45	Reactor design optimization for direct synthesis of hydrogen peroxide. Chemical Engineering Journal, 2010, 160, 909-914.	6.6	35
46	Development of a pressure-driven injection system for precisely time controlled attoliter sample injection into extended nanochannels. Journal of Chromatography A, 2012, 1228, 51-56.	1.8	35
47	Metamaterials-Enhanced Infrared Spectroscopic Study of Nanoconfined Molecules by Plasmonics–Nanofluidics Hydrid Device. ACS Photonics, 2018, 5, 3179-3188.	3.2	35
48	Femtoliter nanofluidic valve utilizing glass deformation. Lab on A Chip, 2019, 19, 1686-1694.	3.1	34
49	Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system. Biomicrofluidics, 2010, 4, 032208.	1.2	33
50	Cultivation and recovery of vascular endothelial cells in microchannels of a separable micro-chemical chip. Biomaterials, 2011, 32, 2459-2465.	5.7	32
51	Novel mutations in ABCA1 gene in Japanese patients with Tangier disease and familial high density lipoprotein deficiency with coronary heart disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2001, 1537, 71-78.	1.8	31
52	Numerical Simulation of Proton Distribution with Electric Double Layer in Extended Nanospaces. Analytical Chemistry, 2013, 85, 4468-4474.	3.2	30
53	Single-Molecule DNA Patterning and Detection by Padlock Probing and Rolling Circle Amplification in Microchannels for Analysis of Small Sample Volumes. Analytical Chemistry, 2011, 83, 3352-3357.	3.2	28
54	Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO ₃ /BiVO ₄ device for solar hydrogen generation. Japanese Journal of Applied Physics, 2016, 55, 04ES01.	0.8	28

K MAWATARI

#	Article	IF	CITATIONS
55	Serial DNA immobilization in micro- and extended nanospace channels. Lab on A Chip, 2009, 9, 1517.	3.1	27
56	Fluorimetric determination of isatin in human urine and serum by liquid chromatography postcolumn photoirradiation. Analyst, The, 2001, 126, 33-36.	1.7	26
57	Circulation microchannel for liquid–liquid microextraction. Mikrochimica Acta, 2009, 164, 241-247.	2.5	26
58	The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form. Biomaterials, 2010, 31, 8839-8846.	5.7	26
59	Extended-nano fluidic systems for analytical and chemical technologies. Nanoscale, 2010, 2, 1588.	2.8	26
60	Thermal lens microscopy as a detector in microdevices. Electrophoresis, 2014, 35, 2279-2291.	1.3	26
61	Electrochemical studies on liquid properties in extended nanospaces using mercury microelectrodes. Electrophoresis, 2009, 30, 3212-3218.	1.3	25
62	From Extended Nanofluidics to an Autonomous Solarâ€Lightâ€Driven Micro Fuelâ€Cell Device. Angewandte Chemie - International Edition, 2017, 56, 8130-8133.	7.2	25
63	Hands on: thermal bonding of nano- and microfluidic chips. Mikrochimica Acta, 2009, 166, 177-181.	2.5	24
64	Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip. ACS Applied Materials & Interfaces, 2015, 7, 23089-23097.	4.0	24
65	Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience (Switzerland), 2019, 9, 1017-1024.	1.6	24
66	Detachable glass micro/nanofluidic device. Biomicrofluidics, 2019, 13, 024104.	1.2	23
67	Thermal lens detection device. Lab on A Chip, 2011, 11, 2990.	3.1	22
68	Femtoliter-scale separation and sensitive detection of nonfluorescent samples in an extended-nano fluidic device. Analyst, The, 2014, 139, 2154-2157.	1.7	22
69	Behavior of Nanoparticles in Extended Nanospace Measured by Evanescent Wave-Based Particle Velocimetry. Analytical Chemistry, 2015, 87, 4087-4091.	3.2	22
70	Micro/extended-nano sampling interface from a living single cell. Analyst, The, 2017, 142, 1689-1696.	1.7	22
71	Extended-nano chromatography. Journal of Chromatography A, 2017, 1490, 11-20.	1.8	22
72	Integration of immunoassay into extended nanospace. Mikrochimica Acta, 2009, 164, 307-310.	2.5	21

#	Article	IF	CITATIONS
73	Sensitive Gas Analysis System on a Microchip and Application for On-Site Monitoring of NH ₃ in a Clean Room. Analytical Chemistry, 2011, 83, 5017-5022.	3.2	21
74	Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Applied Physics Letters, 2011, 99, 123115.	1.5	21
75	High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels. Journal of Chromatography A, 2012, 1238, 152-155.	1.8	21
76	On-Chip Step-Mixing in a T-Nanomixer for Liquid Chromatography in Extended-Nanochannels. Analytical Chemistry, 2016, 88, 10059-10064.	3.2	21
77	Determination of Disodium Cromoglycate in Human Urine by High-performance Liquid Chromatography With Post-column Photoirradiation–Fluorescence Detection. Analyst, The, 1997, 122, 715-717.	1.7	20
78	Femtoliter high-performance liquid chromatography using extended-nano channels. Analyst, The, 2016, 141, 6068-6072.	1.7	20
79	Femtoliter Gradient Elution System for Liquid Chromatography Utilizing Extended Nanofluidics. Analytical Chemistry, 2019, 91, 3009-3014.	3.2	20
80	Direct measurements of the saturated vapor pressure of water confined in extended nanospaces using capillary evaporation phenomena. RSC Advances, 2012, 2, 3184.	1.7	19
81	Individual Nanoparticle Detection in Liquids by Thermal Lens Microscopy and Improvement of Detection Efficiency Using a 1-î¼m Microfluidic Channel. Analytical Sciences, 2009, 25, 275-278.	0.8	18
82	Optical near-field induced visible response photoelectrochemical water splitting on nanorod TiO2. Applied Physics Letters, 2011, 99, .	1.5	18
83	Detection of zeptomole quantities of nonfluorescent molecules in a 101 nm nanochannel by thermal lens microscopy. Analyst, The, 2014, 139, 2721.	1.7	18
84	Keto–Enol Tautomeric Equilibrium of Acetylacetone Solution Confined in Extended Nanospaces. Journal of Physical Chemistry B, 2015, 119, 14750-14755.	1.2	18
85	Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel. Analytical Sciences, 2016, 32, 75-78.	0.8	18
86	Portable Thermal Lens Spectrometer with Focusing System. Analytical Chemistry, 2005, 77, 687-692.	3.2	17
87	Flowing thermal lens micro-flow velocimeter. Sensors and Actuators B: Chemical, 2008, 133, 91-96.	4.0	17
88	Detection of nonfluorescent molecules using differential interference contrast thermal lens microscope for extended nanochannel chromatography. Journal of Separation Science, 2011, 34, 2920-2924.	1.3	17
89	Reversed-phase chromatography in extended-nano space for the separation of amino acids. Journal of Chromatography A, 2015, 1418, 224-227.	1.8	17
90	Nonfluorescent Molecule Detection in 10 ² nm Nanofluidic Channels by Photothermal Optical Diffraction. Analytical Chemistry, 2019, 91, 9741-9746.	3.2	17

#	Article	IF	CITATIONS
91	B Cell Depletion Inhibits Fibrosis via Suppression of Profibrotic Macrophage Differentiation in a Mouse Model of Systemic Sclerosis. Arthritis and Rheumatology, 2021, 73, 2086-2095.	2.9	17
92	On-chip antibody immobilization for on-demand and rapid immunoassay on a microfluidic chip. Biomicrofluidics, 2010, 4, 32207.	1.2	16
93	Rapid screening swine foot-and-mouth disease virus using micro-ELISA system. Lab on A Chip, 2011, 11, 2153.	3.1	16
94	Basic Structure and Cell Culture Condition of a Bioartificial Renal Tubule on Chip towards a Cell-based Separation Microdevice. Analytical Sciences, 2011, 27, 907-912.	0.8	16
95	Synergistic effect between TiO ₂ and ubiquitous metal oxides on photocatalytic activity of composite nanostructures. Journal of the Ceramic Society of Japan, 2014, 122, 393-397.	0.5	16
96	Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. Lab on A Chip, 2019, 19, 3844-3852.	3.1	16
97	Quantitative Detection and Fixation of Single and Multiple Gold Nanoparticles on a Microfluidic Chip by Thermal Lens Microscope. Analytical Sciences, 2006, 22, 781-784.	0.8	15
98	Circular dichroism thermal lens microscope in the UV wavelength region (UV-CD-TLM) for chiral analysis on a microchip. Analytical and Bioanalytical Chemistry, 2008, 391, 2521-2526.	1.9	15
99	The Direct Synthesis of Hydrogen Peroxide (ca. 5 wt %) from Hydrogen and Oxygen by Microreactor Technology. Chemistry Letters, 2009, 38, 820-821.	0.7	15
100	Microchip-based Plasma Separation from Whole Blood via Axial Migration of Blood Cells. Analytical Sciences, 2011, 27, 1173-1178.	0.8	15
101	Nanochannel chromatography and photothermal optical diffraction: Femtoliter sample separation and label-free zeptomole detection. Journal of Chromatography A, 2020, 1624, 461265.	1.8	15
102	Desktop nearâ€field thermalâ€lens microscope for thermoâ€optical detection in microfluidics. Electrophoresis, 2012, 33, 2748-2751.	1.3	14
103	Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics. Analyst, The, 2020, 145, 2669-2675.	1.7	14
104	Ubiquitous element approach to plasmonic enhanced photocatalytic water splitting: the case of Ti@TiO ₂ core-shell nanostructure. Nanotechnology, 2014, 25, 315402.	1.3	13
105	Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules. Analytical Chemistry, 2017, 89, 6043-6049.	3.2	13
106	Clogging-Free Irreversible Bonding of Polycarbonate Membranes to Glass Microfluidic Devices. Journal of the Electrochemical Society, 2017, 164, B3087-B3090.	1.3	13
107	Whole blood analysis using microfluidic plasma separation and enzyme-linked immunosorbent assay devices. Analytical Methods, 2016, 8, 7597-7602.	1.3	11
108	Ultrasensitive detection of nonlabelled bovine serum albumin using photothermal optical phase shift detection with UV excitation. Analyst, The, 2020, 145, 2580-2585.	1.7	11

#	Article	IF	CITATIONS
109	Numerical analysis of thermal lens effect for sensitive detection on microchips. Electrophoresis, 2008, 29, 1895-1901.	1.3	10
110	Development of a Microfluidic Platform for Single-cell Secretion Analysis Using a Direct Photoactive Cell-attaching Method. Analytical Sciences, 2011, 27, 973-978.	0.8	10
111	Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation. Mikrochimica Acta, 2012, 179, 49-55.	2.5	10
112	Micro heat pipe device utilizing extended nanofluidics. RSC Advances, 2017, 7, 50591-50597.	1.7	10
113	Nano X-ray diffractometry device for nanofluidics. Lab on A Chip, 2018, 18, 1259-1264.	3.1	10
114	Enzyme-linked immunosorbent assay utilizing thin-layered microfluidics. Analyst, The, 2019, 144, 6625-6634.	1.7	10
115	Lipid Bilayer-Modified Nanofluidic Channels of Sizes with Hundreds of Nanometers for Characterization of Confined Water and Molecular/Ion Transport. Journal of Physical Chemistry Letters, 2020, 11, 5756-5762.	2.1	10
116	Fluorimetric determination of nicorandil in human plasma by a high-performance liquid chromatographic-postcolumn ultraviolet detection system equipped with on-line back-pressure tubing. Biomedical Applications, 1996, 679, 155-159.	1.7	9
117	Selective cell capture and analysis using shallow antibody-coated microchannels. Biomicrofluidics, 2012, 6, 044117.	1.2	9
118	From Extended Nanofluidics to an Autonomous Solarâ€Lightâ€Driven Micro Fuel ell Device. Angewandte Chemie, 2017, 129, 8242-8245.	1.6	9
119	Development of a micro droplet collider; the liquid–liquid system utilizing the spatial–temporal localized energy. Microfluidics and Nanofluidics, 2010, 9, 945-953.	1.0	8
120	Extended nanospace chemical systems on a chip for new analytical technology. Analyst, The, 2011, 136, 3051.	1.7	8
121	Rapid alteration of serum interleukinâ€6 levels may predict the reactivity of i.v. cyclophosphamide pulse therapy in systemic sclerosisâ€associated interstitial lung disease. Journal of Dermatology, 2018, 45, 1221-1224.	0.6	8
122	Detection and Characterization of Individual Nanoparticles in a Liquid by Photothermal Optical Diffraction and Nanofluidics. Analytical Chemistry, 2020, 92, 3434-3439.	3.2	8
123	Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection. Nanoscale, 2021, 13, 8855-8863.	2.8	8
124	Micro and Nano Chemical Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 526-533.	0.0	8
125	Water structure in 100Ânm nanochannels revealed by nano X-ray diffractometry and Raman spectroscopy. Journal of Molecular Liquids, 2022, 350, 118567.	2.3	8
126	Communication—Evaporation Driven Micro/Nanofluidic Pumping Device. Journal of the Electrochemical Society, 2018, 165, B184-B186.	1.3	7

K MAWATARI

#	Article	IF	CITATIONS
127	Characterization of optical diffraction by single nanochannel for aL–fL sample detection in nanofluidics. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	7
128	Reversed-phase Chromatography in an Extended Nanospace: Separating Amino Acids in Short and Long Nanochannels. Analytical Sciences, 2015, 31, 1201-1204.	0.8	6
129	A sensitive and rapid assay of BNP in patient blood by micro-ELISA. Analytical Methods, 2017, 9, 2830-2834.	1.3	6
130	Isotope Effect in the Liquid Properties of Water Confined in 100 nm Nanofluidic Channels. Journal of Physical Chemistry B, 2021, 125, 3178-3183.	1.2	6
131	Determination of Cattle Foot-and-Mouth Disease Virus by Micro-ELISA Method. Analytical Sciences, 2014, 30, 359-363.	0.8	5
132	Low-temperature bonding process for the fabrication of hybrid glass–membrane organ-on-a-chip devices. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 044502.	1.0	5
133	Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel. Micromachines, 2018, 9, 423.	1.4	5
134	Concentration Determination at a Countable Molecular Level in Nanofluidics by Solvent-Enhanced Photothermal Optical Diffraction. Analytical Chemistry, 2020, 92, 14366-14372.	3.2	5
135	Nano-bubble Valve. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	5
136	Picoliter liquid handling at gas/liquid interface by surface and geometry control in a micro-nanofluidic device. Journal of Micromechanics and Microengineering, 2022, 32, 024001.	1.5	5
137	Reflective thermal lens detection device. Lab on A Chip, 2006, 6, 127-130.	3.1	4
138	Highly Sensitive Detection of Non-Labeled Peptides Using UV Excitation Thermal Lens Microscope/Liquid Chromatography. Bunseki Kagaku, 2007, 56, 1-7.	0.1	4
139	Lateral spatial resolution of thermal lens microscopy during continuous scanning for nonstaining biofilm imaging. Journal of Applied Physics, 2009, 105, 102030.	1.1	4
140	High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel. Micromachines, 2016, 7, 142.	1.4	4
141	Graft linker immobilization for spatial control of protein immobilization inside fused microchips. Electrophoresis, 2009, 30, 4251-4255.	1.3	3
142	Reply to Comment on "Development of Measurement Technique for Ion Distribution in Extended Nanochannel by Super Resolution-Laser Induced Fluorescence― Analytical Chemistry, 2012, 84, 10855-10855.	3.2	3
143	A competitive microfluidic immunological clenbuterol analysis using a microELISA system. RSC Advances, 2014, 4, 39894.	1.7	3
144	Diffraction-based label-free photothermal detector for separation analyses in a nanocapillary. Journal of Chromatography A, 2021, 1648, 462214.	1.8	3

#	Article	IF	CITATIONS
145	Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel. Lab on A Chip, 2011, 11, 3098.	3.1	2
146	Structure and Dynamics of Water and Nonaqueous Solvents Confined in Extended Nanospaces Characterized by NMR Spectroscopy. Bunseki Kagaku, 2015, 64, 261-271.	0.1	2
147	Analytical Method by Micro-ELISA for Small Amount of Patient Sample. Bunseki Kagaku, 2015, 64, 461-468.	0.1	2
148	Novel sub-100Ânm surface chemical modification by optical near-field induced photocatalytic reaction. Microfluidics and Nanofluidics, 2014, 17, 751-758.	1.0	1
149	Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models. Proceedings of SPIE, 2015, , .	0.8	1
150	Ferroelectric Extended Nanofluidic Channels for Roomâ€Temperature Microfuel Cells. Advanced Materials Technologies, 2019, 4, 1900252.	3.0	1
151	UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip. , 2005, , .		0
152	Functional thermal lens microscopes for ultrasensitive analysis of non-fluorescent molecules and microchip chemistry. , 2006, , .		0
153	Development of a Micro-Potentiometric Sensor for the Microchip Analysis of Alkali Ions. Analytical Sciences, 2009, 25, 1397-1401.	0.8	0
154	Extended-Nanofluidic Devices and the Unique Liquid Properties - Invited Paper. Solid State Phenomena, 0, 255, 157-160.	0.3	0
155	"Micro/nanofluidics and Micro/nanotechnologies for Analytical Chemistry: Fundamental Technologies, Characteristic Phenomena, Applications, and Instrumentation". Analytical Sciences, 2016, 32, 1-1.	0.8	0
156	287 The micro-fluidics reveals the role of vascular endothelium-specific B cells in cutaneous leukocytoclastic vasculitis. Journal of Investigative Dermatology, 2016, 136, S210.	0.3	0
157	331 Single cell analysis reveals diversity of phenotype and function of autoantigen-specific B cells in systemic sclerosis. Journal of Investigative Dermatology, 2017, 137, S249.	0.3	0
158	Investigation of Preservation Stability for a Small Amount of Patient Samples Using Microfluidic Device. Bunseki Kagaku, 2017, 66, 453-457.	0.1	0
159	Determination of N1-Methylnicotinamide by Hplc Postcolumn Photoirradiation. Advances in Experimental Medicine and Biology, 1999, 467, 817-819.	0.8	0