
Kamalalayam Rajan Sreejith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10682966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Digital polymerase chain reaction technology – recent advances and future perspectives. Lab on A Chip, 2018, 18, 3717-3732.	6.0	98
2	Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst, The, 2020, 145, 7680-7686.	3.5	62
3	Liquid Marbles as Miniature Reactors for Chemical and Biological Applications. Processes, 2020, 8, 793.	2.8	60
4	Liquid marbles as biochemical reactors for the polymerase chain reaction. Lab on A Chip, 2019, 19, 3220-3227.	6.0	44
5	Liquid marble-based digital microfluidics – fundamentals and applications. Lab on A Chip, 2021, 21, 1199-1216.	6.0	41
6	Evaporation dynamics of liquid marbles at elevated temperatures. RSC Advances, 2018, 8, 15436-15443.	3.6	36
7	Core-Shell Beads Made by Composite Liquid Marble Technology as A Versatile Microreactor for Polymerase Chain Reaction. Micromachines, 2020, 11, 242.	2.9	31
8	Capillarity: revisiting the fundamentals of liquid marbles. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	28
9	Manipulation of a floating liquid marble using dielectrophoresis. Lab on A Chip, 2018, 18, 3770-3779.	6.0	27
10	Dielectrophoretic Trapping of a Floating Liquid Marble. Physical Review Applied, 2019, 11, .	3.8	24
11	A novel RdRp-based colorimetric RT-LAMP assay for rapid and sensitive detection of SARS-CoV-2 in clinical and sewage samples from Pakistan. Virus Research, 2021, 302, 198484.	2.2	24
12	Cryoprotectant-Free Freezing of Cells Using Liquid Marbles Filled with Hydrogel. ACS Applied Materials & Interfaces, 2018, 10, 43439-43449.	8.0	23
13	Accurate dielectrophoretic positioning of a floating liquid marble with a two-electrode configuration. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	17
14	An automated on-demand liquid marble generator based on electrohydrodynamic pulling. Review of Scientific Instruments, 2019, 90, 055102.	1.3	17
15	Critical Trapping Conditions for Floating Liquid Marbles. Physical Review Applied, 2020, 13, .	3.8	15
16	Effect of Core Liquid Surface Tension on the Liquid Marble Shell. Advanced Materials Interfaces, 2021, 8, 2001591.	3.7	15
17	Controllable high-performance liquid marble micromixer. Lab on A Chip, 2022, 22, 1508-1518.	6.0	15
18	Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria. Micromachines, 2019, 10, 883.	2.9	13

#	Article	IF	CITATIONS
19	Surfactant-free, UV-curable core–shell microcapsules in a hydrophilic PDMS microfluidic device. AIP Advances, 2020, 10, .	1.3	10
20	Core-Shell Beads as Microreactors for Phylogrouping of E. coli Strains. Micromachines, 2020, 11, 761.	2.9	8
21	A Portable Device for LAMP Based Detection of SARS-CoV-2. Micromachines, 2021, 12, 1151.	2.9	8
22	Investigation of liquid marble shell using Xâ€ray: shell thickness and effective surface tension. ChemNanoMat, 2022, 8, .	2.8	4
23	Loop-Mediated Isothermal Amplification in a Core-Shell Bead Assay for the Detection of Tyrosine Kinase AXL Overexpression. Micromachines, 2021, 12, 905.	2.9	3
24	Noninvasive refilling of liquid marbles with water for microfluidic applications. Applied Physics Letters, 2022, 120, .	3.3	3