Gianpaolo Coro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1068203/publications.pdf

Version: 2024-02-01

50	1,290 citations	471509	395702
papers	citations	h-index	g-index
54	54	54	1322
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 2017, 18, 506-526.	5.3	245
2	Status and rebuilding of European fisheries. Marine Policy, 2018, 93, 159-170.	3 . 2	179
3	A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 2018, 75, 2004-2015.	2.5	137
4	Estimating stock status from relative abundance and resilience. ICES Journal of Marine Science, 2020, 77, 527-538.	2.5	48
5	Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea. Ecological Modelling, 2018, 371, 37-49.	2,5	47
6	Enacting open science by D4Science. Future Generation Computer Systems, 2019, 101, 555-563.	7.5	44
7	Predicting geographical suitability of geothermal power plants. Journal of Cleaner Production, 2020, 267, 121874.	9.3	38
8	On the pile-up effect and priors for Linf and M/K: response to a comment by Hordyk et al. on "A new approach for estimating stock status from length frequency data― ICES Journal of Marine Science, 2019, 76, 461-465.	2.5	36
9	A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecological Modelling, 2020, 431, 109187.	2,5	31
10	Parallelizing the execution of native data mining algorithms for computational biology. Concurrency Computation Practice and Experience, 2015, 27, 4630-4644.	2.2	28
11	Species distribution modeling in the cloud. Concurrency Computation Practice and Experience, 2016, 28, 1056-1079.	2.2	27
12	Cloud computing in a distributed eâ€infrastructure using the web processing service standard. Concurrency Computation Practice and Experience, 2017, 29, e4219.	2.2	27
13	A multiscale statistical method to identify potential areas of hyporheic exchange for river restoration planning. Environmental Modelling and Software, 2019, 111, 311-323.	4. 5	27
14	Revisiting safe biological limits in fisheries. Fish and Fisheries, 2016, 17, 193-209.	5. 3	26
15	The gCube system: Delivering Virtual Research Environments as-a-Service. Future Generation Computer Systems, 2019, 95, 445-453.	7. 5	26
16	Improving data quality to build a robust distribution model for Architeuthis dux. Ecological Modelling, 2015, 305, 29-39.	2.5	21
17	Estimating absence locations of marine species from data of scientific surveys in OBIS. Ecological Modelling, 2016, 323, 61-76.	2.5	21
18	An intelligent and cost-effective remote underwater video device for fish size monitoring. Ecological Informatics, 2021, 63, 101311.	5.2	18

#	Article	IF	CITATIONS
19	Analysing and forecasting fisheries time series: purse seine in Indian Ocean as a case study. ICES Journal of Marine Science, 2016, 73, 2552-2571.	2.5	17
20	Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae. Ecological Modelling, 2013, 268, 55-63.	2.5	16
21	An infrastructure-oriented approach for supporting biodiversity research. Ecological Informatics, 2015, 26, 162-172.	5.2	16
22	A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 2019, 76, 350-351.	2.5	16
23	Retrieving taxa names from large biodiversity data collections using a flexible matching workflow. Ecological Informatics, 2015, 28, 29-41.	5.2	14
24	Automatic classification of climate change effects on marine species distributions in 2050 using the AquaMaps model. Environmental and Ecological Statistics, 2016, 23, 155-180.	3 . 5	14
25	A collection of Aquamaps native layers in NetCDF format. Data in Brief, 2018, 17, 292-296.	1.0	13
26	An Open Science approach to infer fishing activity pressure on stocks and biodiversity from vessel tracking data. Ecological Informatics, 2021, 64, 101384.	5.2	12
27	COVID-19 lockdowns reveal the resilience of Adriatic Sea fisheries to forced fishing effort reduction. Scientific Reports, 2022, 12, 1052.	3.3	11
28	Comparing heterogeneous distribution maps for marine species. GIScience and Remote Sensing, 2014, 51, 593-611.	5.9	10
29	Classifying degrees of species commonness: North Sea fish as a case study. Ecological Modelling, 2015, 312, 272-280.	2,5	10
30	Detecting patterns of climate change in long-term forecasts of marine environmental parameters. International Journal of Digital Earth, 2020, 13, 567-585.	3.9	10
31	Quantifying Coral Reef Composition of Recreational Diving Sites: A Structure from Motion Approach at Seascape Scale. Remote Sensing, 2019, 11, 3027.	4.0	9
32	Psycho-acoustics inspired automatic speech recognition. Computers and Electrical Engineering, 2021, 93, 107238.	4.8	9
33	Deriving fishing monthly effort and caught species from vessel trajectories. , 2013, , .		8
34	Data Poor Approach for the Assessment of the Main Target Species of Rapido Trawl Fishery in Adriatic Sea. Frontiers in Marine Science, 2021, 8, .	2.5	7
35	Exploring the status of the Indonesian deep demersal fishery using length-based stock assessments. Fisheries Research, 2021, 243, 106089.	1.7	7
36	OPEN SCIENCE AND ARTIFICIAL INTELLIGENCE SUPPORTING BLUE GROWTH. Environmental Engineering and Management Journal, 2020, 19, 1719-1729.	0.6	7

#	Article	IF	CITATIONS
37	Habitat distribution change of commercial species in the Adriatic Sea during the COVID-19 pandemic. Ecological Informatics, 2022, 69, 101675.	5.2	7
38	Reconstructing 3D virtual environments within a collaborative eâ€infrastructure. Concurrency Computation Practice and Experience, 2019, 31, e5028.	2.2	6
39	Distinguishing Violinists and Pianists Based on Their Brain Signals. Lecture Notes in Computer Science, 2019, , 123-137.	1.3	5
40	A High-resolution Global-scale Model for COVID-19 Infection Rate. ACM Transactions on Spatial Algorithms and Systems, 2022, 8, 1-24.	1.4	5
41	Virtual research environments coâ€creation: The D4Science experience. Concurrency Computation Practice and Experience, 2023, 35, .	2.2	5
42	Building a European geothermal information network using a distributed e-Infrastructure. International Journal of Digital Earth, 2016, 9, 499-519.	3.9	4
43	Realizing virtual research environments for the agriâ€food community: The AGINFRA PLUS experience. Concurrency Computation Practice and Experience, 2021, 33, e6087.	2.2	4
44	NLPHub: An eâ€Infrastructureâ€based text mining hub. Concurrency Computation Practice and Experience, 2021, 33, e5986.	2.2	4
45	Filling Gaps in Trawl Surveys at Sea through Spatiotemporal and Environmental Modelling. Frontiers in Marine Science, 0, 9, .	2.5	4
46	Automatic detection of potentially ineffective verbal communication for training through simulation in neonatology. Education and Information Technologies, 2022, 27, 9181-9203.	5.7	3
47	Speech recognition with factorial-HMM syllabic acoustic models. , 0, , .		2
48	Automatic Procedures to Assist in Manual Review of Marine Species Distribution Maps. Lecture Notes in Computer Science, 2013, , 346-355.	1.3	2
49	Supporting Tabular Data Characterization in a Large Scale Data Infrastructure by Lexical Matching Techniques. Communications in Computer and Information Science, 2013, , 21-32.	0.5	1
50	Data Processing and Analytics for Data-Centric Sciences. Lecture Notes in Computer Science, 2020, , 176-191.	1.3	0