## Apurba K Patra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1068179/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reactivity of Nitric Oxide and Nitrosonium Ion with Copper(II/I) Schiff Base Complexes: Mechanistic<br>Aspects of Imine Câ•N Bond Cleavage and Oxidation of Pyridine-2-aldehyde to Pyridine-2-carboxylic Acid.<br>Inorganic Chemistry, 2022, 61, 6421-6437.                           | 1.9 | 3         |
| 2  | Bis(μ-thiolato)-dicopper Containing Fully Spin Delocalized Mixed Valence Copper–Sulfur Clusters and<br>Their Electronic Structural Properties with Relevance to the Cu <sub>A</sub> Site. Inorganic<br>Chemistry, 2021, 60, 5779-5790.                                                | 1.9 | 2         |
| 3  | Nickel(II)â€Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic<br>Cycle of Methylâ€Coenzymeâ€M Reductase. Angewandte Chemie - International Edition, 2020, 59, 9177-9185.                                                                   | 7.2 | 7         |
| 4  | Nickel(II)â€Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic<br>Cycle of Methyl oenzymeâ€M Reductase. Angewandte Chemie, 2020, 132, 9262-9270.                                                                                            | 1.6 | 0         |
| 5  | Efficient removal of Hg2+, Cd2+ and Pb2+ from aqueous solution and mixed industrial wastewater<br>using a designed chelating ligand, 2-pyridyl-N-(2′-methylthiophenyl) methyleneimine (PMTPM). Water<br>Science and Technology, 2019, 79, 1092-1101.                                  | 1.2 | 9         |
| 6  | A Copper(II) Nitrite That Exhibits Change of Nitrite Binding Mode and Formation of Copper(II) Nitrosyl<br>Prior to Nitric Oxide Evolution. Inorganic Chemistry, 2018, 57, 1550-1561.                                                                                                  | 1.9 | 19        |
| 7  | Model Complexes for the Ni <sub>p</sub> Site of Acetyl Coenzyme A Synthase/Carbon Monoxide (CO)<br>Dehydrogenase: Structure, Electrochemistry, and CO Reactivity. Inorganic Chemistry, 2018, 57,<br>13713-13727.                                                                      | 1.9 | 9         |
| 8  | Mixed valence copper–sulfur clusters of highest nuclearity: a Cu <sub>8</sub> wheel and a Cu <sub>16</sub> nanoball. Chemical Communications, 2017, 53, 3334-3337.                                                                                                                    | 2.2 | 12        |
| 9  | Evaluating corrosion inhibition property of some Schiff bases for mild steel in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Advances, 2016, 6, 74833-74844.                                                                    | 1.7 | 65        |
| 10 | Electron transfer mechanism of catalytic superoxide dismutation via Cu( <scp>ii</scp> / <scp>i</scp> )<br>complexes: evidence of cupric–superoxo/–hydroperoxo species. Dalton Transactions, 2016, 45,<br>11898-11910.                                                                 | 1.6 | 7         |
| 11 | Copper coordinated ligand thioether-S and NO <sub>2</sub> <sup>â^'</sup> oxidation: relevance to the<br>Cu <sub>M</sub> site of hydroxylases. Dalton Transactions, 2015, 44, 17587-17599.                                                                                             | 1.6 | 5         |
| 12 | Hexacoordinate Nickel(II)/(III) Complexes that Mimic the Catalytic Cycle of Nickel Superoxide<br>Dismutase. Angewandte Chemie, 2014, 126, 10348-10353.                                                                                                                                | 1.6 | 4         |
| 13 | Hexacoordinate Nickel(II)/(III) Complexes that Mimic the Catalytic Cycle of Nickel Superoxide<br>Dismutase. Angewandte Chemie - International Edition, 2014, 53, 10184-10189.                                                                                                         | 7.2 | 26        |
| 14 | Copper Complexes Relevant to the Catalytic Cycle of Copper Nitrite Reductase: Electrochemical<br>Detection of NO( <i>g</i> ) Evolution and Flipping of NO <sub>2</sub> Binding Mode upon<br>Cu <sup>II</sup> → Cu <sup>I</sup> Reduction. Inorganic Chemistry, 2013, 52, 11084-11095. | 1.9 | 35        |
| 15 | Shuttling of Nickel Oxidation States in N <sub>4</sub> S <sub>2</sub> Coordination Geometry versus<br>Donor Strength of Tridentate N <sub>2</sub> S Donor Ligands. Inorganic Chemistry, 2012, 51, 7625-7635.                                                                          | 1.9 | 33        |
| 16 | First structural example of a metal uncoordinated mesoionic imidazo[1,5-a]pyridine and its precursor intermediate copper complex: an insight to the catalytic cycle. Dalton Transactions, 2011, 40, 12866.                                                                            | 1.6 | 18        |
| 17 | Cu(II) complexes with square pyramidal (N2S)CuCl2 chromophore: Jahn–Teller distortion and subsequent effect on spectral and structural properties. Inorganica Chimica Acta, 2011, 370, 247-253.                                                                                       | 1.2 | 71        |
| 18 | Structural and spectroscopic evidence for linkage isomerism of bound nitrite in a {Fe–NO}6 nitrosyl derived from a tetradentate dicarboxamide ligand: More parallels between heme and non-heme systems. Inorganica Chimica Acta, 2010, 363, 2715-2719.                                | 1.2 | 7         |

Apurba K Patra

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ruthenium Nitrosyls Derived from Polypyridine Ligands with Carboxamide or Imine Nitrogen Donor(s):Â<br>Isoelectronic Complexes with Different NO Photolability. Inorganic Chemistry, 2007, 46, 2328-2338.                                                              | 1.9 | 63        |
| 20 | Synthesis, Structure, and Properties of an Fe(II) Carbonyl [(PaPy3)Fe(CO)](ClO4):Â Insight into the<br>Reactivity of Fe(II)â^'CO and Fe(II)â^'NO Moieties in Non-Heme Iron Chelates of N-Donor Ligands. Inorganic<br>Chemistry, 2006, 45, 3774-3781.                   | 1.9 | 14        |
| 21 | Biological Activity of Designed Photolabile Metal Nitrosyls:Â Light-Dependent Activation of Soluble<br>Guanylate Cyclase and Vasorelaxant Properties in Rat Aorta. Journal of Medicinal Chemistry, 2006, 49,<br>7325-7330.                                             | 2.9 | 46        |
| 22 | Dinuclear Bis(1,2-diaryl-1,2-ethylenedithiolato)iron Complexes:Â [FeIII2(L)4]n(n= 2â^', 1â^', 0, 1+). Inorganic<br>Chemistry, 2006, 45, 6541-6548.                                                                                                                     | 1.9 | 29        |
| 23 | Electronic Structure of Mononuclear Bis(1,2-diaryl-1,2-ethylenedithiolato)iron Complexes Containing<br>a Fifth Cyanide or Phosphite Ligand:  A Combined Experimental and Computational Study. Inorganic<br>Chemistry, 2006, 45, 7877-7890.                             | 1.9 | 31        |
| 24 | Light-induced inhibition of papain by a {Mn–NO}6 nitrosyl: Identification of papain–SNO adduct by mass spectrometry. Journal of Inorganic Biochemistry, 2005, 99, 1458-1464.                                                                                           | 1.5 | 30        |
| 25 | Photolabile Ruthenium Nitrosyls with Planar Dicarboxamide Tetradentate N4Ligands:Â Effects of<br>In-Plane and Axial Ligand Strength on NO Release. Inorganic Chemistry, 2004, 43, 4487-4495.                                                                           | 1.9 | 117       |
| 26 | Reactions of Nitric Oxide with a Low-Spin Fe(III) Center Ligated to a Tetradentate Dicarboxamide N4<br>Ligand:  Parallels between Heme and Non-heme Systems. Journal of the American Chemical Society, 2004,<br>126, 4780-4781.                                        | 6.6 | 41        |
| 27 | Syntheses, Structures, and Reactivities of {Feâ^'NO}6Nitrosyls Derived from Polypyridine-Carboxamide<br>Ligands:Â Photoactive NO-Donors and Reagents for S-Nitrosylation of Alkyl Thiols. Inorganic<br>Chemistry, 2004, 43, 5736-5743.                                 | 1.9 | 45        |
| 28 | Thermally Induced Stoichiometric and Catalytic O-Atom Transfer by a Non-Heme Iron(III)–Nitro<br>Complex: First Example of Reversible{Fe–NO}7↔FeIII-NO2 Transformation in the Presence of Dioxygen.<br>Angewandte Chemie - International Edition, 2003, 42, 4517-4521.  | 7.2 | 40        |
| 29 | Iron Nitrosyls of a Pentadentate Ligand Containing a Single Carboxamide Group:Â Syntheses,<br>Structures, Electronic Properties, and Photolability of NO. Inorganic Chemistry, 2003, 42, 6812-6823.                                                                    | 1.9 | 94        |
| 30 | Synthesis and Characterization of N2S3Xâ^'Fe Models of Iron-Containing Nitrile Hydratase. Inorganic Chemistry, 2003, 42, 4382-4388.                                                                                                                                    | 1.9 | 43        |
| 31 | A Ruthenium Nitrosyl That Rapidly Delivers NO to Proteins in Aqueous Solution upon Short Exposure<br>to UV Light. Inorganic Chemistry, 2003, 42, 7363-7365.                                                                                                            | 1.9 | 107       |
| 32 | First {Feâ^'NO}6Complex with an N2S3Feâ^'NO Core as a Model of NO-Inactivated Iron-Containing Nitrile<br>Hydratase. Are Thiolates and Thioethers Equivalent Donors in Low-Spin Iron Complexes?. Inorganic<br>Chemistry, 2002, 41, 1039-1041.                           | 1.9 | 47        |
| 33 | Spontaneous Reduction of a Low-Spin Fe(III) Complex of a Neutral Pentadentate N5Schiff Base Ligand to the Corresponding Fe(II) Species in Acetonitrile. Inorganic Chemistry, 2002, 41, 5403-5409.                                                                      | 1.9 | 43        |
| 34 | The First Non-Heme Iron(III) Complex with a Ligated Carboxamido Group That Exhibits Photolability of a Bound NO Ligand. Angewandte Chemie - International Edition, 2002, 41, 2512-2515.                                                                                | 7.2 | 102       |
| 35 | Magneto–structural studies of monohydroxo-bridged dicopper(II) complexes M[Cu2L2(OH)]·2H2O<br>(M=Na+ (1) and K+ (2); H2L=2,6-bis[N-(phenyl)carbamoyl]pyridine). Effect of Cuî—,OHî—,Cu bridge angle on<br>antiferromagnetic coupling. Polyhedron, 2000, 19, 1423-1428. | 1.0 | 39        |
|    |                                                                                                                                                                                                                                                                        |     |           |