Jinhyuk Bhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10681215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteogenomic Characterization of Human Early-Onset Gastric Cancer. Cancer Cell, 2019, 35, 111-124.e10.	16.8	183
2	Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nature Communications, 2016, 7, 10347.	12.8	159
3	Bacterial Uracil Modulates Drosophila DUOX-Dependent Gut Immunity via Hedgehog-Induced Signaling Endosomes. Cell Host and Microbe, 2015, 17, 191-204.	11.0	105
4	Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13510-13515.	7.1	100
5	RORα controls hepatic lipid homeostasis via negative regulation of PPARγ transcriptional network. Nature Communications, 2017, 8, 162.	12.8	98
6	Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLoS ONE, 2015, 10, e0129273.	2.5	75
7	DNA Damage-Induced RORα Is Crucial for p53 Stabilization and Increased Apoptosis. Molecular Cell, 2011, 44, 797-810.	9.7	67
8	Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal of Clinical Investigation, 2018, 128, 5335-5350.	8.2	57
9	Molecular pathogenesis of Spondylocheirodysplastic Ehlersâ€Đanlos syndrome caused by mutant ZIP13 proteins. EMBO Molecular Medicine, 2014, 6, 1028-1042.	6.9	56
10	Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. Journal of Investigative Dermatology, 2017, 137, 1682-1691.	0.7	55
11	Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genetics, 2017, 13, e1006950.	3.5	50
12	Requirement of zinc transporter ZIP10 for epidermal development: Implication of the ZIP10–p63 axis in epithelial homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12243-12248.	7.1	45
13	<i>In situ</i> CRISPRâ€Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO Journal, 2020, 39, e102169.	7.8	40
14	An Acrodermatitis Enteropathica-Associated Zn Transporter, ZIP4, Regulates Human Epidermal Homeostasis. Journal of Investigative Dermatology, 2017, 137, 874-883.	0.7	33
15	Fibronectin-Containing Extracellular Vesicles Protect Melanocytes against Ultraviolet Radiation-Induced Cytotoxicity. Journal of Investigative Dermatology, 2016, 136, 957-966.	0.7	32
16	Hyperosmotic Stress Reduces Melanin Production by Altering Melanosome Formation. PLoS ONE, 2014, 9, e105965.	2.5	25
17	Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nature Communications, 2015, 6, 6810.	12.8	24
18	The Development of Sugar-Based Anti-Melanogenic Agents. International Journal of Molecular Sciences, 2016, 17, 583.	4.1	23

Јілнуик Вніл

#	Article	IF	CITATIONS
19	PGC-Enriched miRNAs Control Germ Cell Development. Molecules and Cells, 2015, 38, 895-903.	2.6	21
20	Transcriptional regulatory networks underlying the reprogramming of spermatogonial stem cells to multipotent stem cells. Experimental and Molecular Medicine, 2017, 49, e315-e315.	7.7	13
21	The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose. Archives of Dermatological Research, 2017, 309, 217-223.	1.9	6