Denise Maria Avancini Costa Malheiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10680582/publications.pdf

Version: 2024-02-01

36 papers

1,574 citations

430843 18 h-index 35 g-index

36 all docs 36 docs citations

36 times ranked 1877 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Attenuate Renal Fibrosis Through Immune Modulation and Remodeling Properties in a Rat Remnant Kidney Model. Stem Cells, 2009, 27, 3063-3073.	3.2	248
2	Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney International, 2003, 63, 209-216.	5.2	172
3	Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney International, 1998, 54, 1510-1519.	5.2	158
4	Intrarenal Renin-Angiotensin System Is Upregulated in Experimental Model of Progressive Renal Disease Induced by Chronic Inhibition of Nitric Oxide Synthesis. Journal of the American Society of Nephrology: JASN, 2004, 15, 1805-1815.	6.1	118
5	Combined Mycophenolate Mofetil and Losartan Therapy Arrests Established Injury in the Remnant Kidney. Journal of the American Society of Nephrology: JASN, 2000, 11, 283-290.	6.1	102
6	Renal expression of COX-2, ANG II, and AT ₁ receptor in remnant kidney: strong renoprotection by therapy with losartan and a nonsteroidal anti-inflammatory. American Journal of Physiology - Renal Physiology, 2004, 286, F945-F954.	2.7	84
7	An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney International, 2005, 67, 1913-1924.	5.2	82
8	Adipose Tissue-Derived Stem Cell Treatment Prevents Renal Disease Progression. Cell Transplantation, 2012, 21, 1727-1741.	2.5	7 5
9	Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney International, 2003, 64, 2172-2181.	5.2	62
10	TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clinical Science, 2018, 132, 1725-1739.	4.3	50
11	NLRP3 inflammasome inhibition ameliorates tubulointerstitial injury in the remnant kidney model. Laboratory Investigation, 2018, 98, 773-782.	3.7	45
12	Regression of Albuminuria and Hypertension and Arrest of Severe Renal Injury by a Losartan-Hydrochlorothiazide Association in a Model of Very Advanced Nephropathy. PLoS ONE, 2013, 8, e56215.	2.5	43
13	Mycophenolate Mofetil Reduces Renal Injury in the Chronic Nitric Oxide Synthase Inhibition Model. Hypertension, 2001, 37, 170-175.	2.7	42
14	Deletion of bradykinin B1 receptor reduces renal fibrosis. International Immunopharmacology, 2009, 9, 653-657.	3.8	31
15	Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Laboratory Investigation, 2010, 90, 685-695.	3.7	31
16	NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. American Journal of Physiology - Renal Physiology, 2013, 305, F155-F163.	2.7	30
17	Evidence for the Existence of Two Distinct Functions for the Inducible NO Synthase in the Rat Kidney: Effect of Aminoguanidine in Rats with 5/6 Ablation. Journal of the American Society of Nephrology: JASN, 2002, 13, 2278-2287.	6.1	27
18	NF-κB System Is Chronically Activated and Promotes Glomerular Injury in Experimental Type 1 Diabetic Kidney Disease. Frontiers in Physiology, 2020, 11, 84.	2.8	27

#	Article	IF	Citations
19	AT ₁ blockade during lactation as a model of chronic nephropathy: mechanisms of renal injury. American Journal of Physiology - Renal Physiology, 2008, 294, F1345-F1353.	2.7	20
20	Compartment-specific expression of natural killer cell markers in renal transplantation: immune profile in acute rejection. Transplant International, 2016, 29, 443-452.	1.6	17
21	Metabolomic characterization of renal ischemia and reperfusion in a swine model. Life Sciences, 2016, 156, 57-67.	4.3	14
22	An association of losartan-hydrochlorothiazide, but not losartan-furosemide, completely arrests progressive injury in the remnant kidney. American Journal of Physiology - Renal Physiology, 2016, 310, F135-F143.	2.7	13
23	Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria. Bioscience Reports, 2018, 38, .	2.4	12
24	Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. American Journal of Physiology - Renal Physiology, 2019, 317, F1058-F1067.	2.7	12
25	Renal thrombotic microangiopathy associated to worse renal prognosis in Lupus Nephritis. Journal of Nephrology, 2021, 34, 1147-1156.	2.0	12
26	PERSISTENT HYPERTENSION AND PROGRESSIVE RENAL INJURY INDUCED BY SALT OVERLOAD AFTER SHORT TERM NITRIC OXIDE INHIBITION. Clinics, 2007, 62, 749-756.	1.5	10
27	Reduced expression of VAChT increases renal fibrosis. Pathophysiology, 2016, 23, 229-236.	2.2	6
28	Expression patterns of CD56+ and CD16+ cells in renal transplant biopsies with acute rejection: Associations with microcirculation injuries and graft survival. Nephrology, 2017, 22, 993-1001.	1.6	6
29	Chronic exposure to hypoxia attenuates renal injury and innate immunity activation in the remnant kidney model. American Journal of Physiology - Renal Physiology, 2019, 317, F1285-F1292.	2.7	6
30	Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Frontiers in Physiology, 2021, 12, 606392.	2.8	5
31	Methimazole-Induced ANCA Vasculitis: A Case Report. Diagnostics, 2021, 11, 1580.	2.6	4
32	Role of adipose tissue-derived stem cells in the progression of renal disease. Einstein (Sao Paulo,) Tj ETQq0 0 0 rg	gBT/Overl	ock 10 Tf 50 2
33	lgA nephropathy and polymyositis: a rare association. Revista Brasileira De Reumatologia, 2014, 54, 231-3.	0.8	3
34	NF-ÎB blockade during short-term l-NAME and salt overload strongly attenuates the late development of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F215-F228.	2.7	2
35	Kinin B ₂ receptor does not exert renoprotective effects on mice with glycerol-induced rhabdomyolysis. World Journal of Nephrology, 2014, 3, 85.	2.0	2
36	Demonstration of Epithelial-Mesenchymal Transition in Kidney. Applied Immunohistochemistry and Molecular Morphology, 2008, 16, 191-195.	1.2	0