Ismail Khattech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10680355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermochemistry and kinetics of the aspect of diammonium hydrogen phosphate precipitation in phosphoric acid solution. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3173-3179.	3.6	3
2	Structure and luminescent properties of Sm3+-doped metaphosphate glasses. Optical Materials, 2021, 121, 111571.	3.6	7
3	Structure and peculiar luminescence of Eu3+-doped sodium/alkaline earths phosphate glasses. Journal of Luminescence, 2021, 239, 118349.	3.1	7
4	Barium polyphosphate glasses, from structure to thermochemistry. Materials Chemistry and Physics, 2020, 239, 122087.	4.0	3
5	Thermochemical and kinetic study of the attack of fluorapatite by sulfuric acid solution at different temperatures. Journal of Thermal Analysis and Calorimetry, 2020, 141, 807-817.	3.6	2
6	Calorimetric approach to assess the apatite-forming capacity of bioactive glasses. Journal of Non-Crystalline Solids, 2020, 550, 120290.	3.1	2
7	Structural and Calorimetric Studies of Zinc, Magnesium and Manganese Based Phosphate and Phosphate-Silicate Glasses. , 2020, , .		0
8	Dissolution of Tunisian phosphate ore by a mixture of sulfuric and phosphoric acid: Kinetics study by means of differential reaction calorimetry. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55, 9-19.	0.8	3
9	Structure properties relationship in calcium sodium metaphosphate and polyphosphate glasses. Journal of Non-Crystalline Solids, 2018, 485, 1-13.	3.1	16
10	Thermochemical and kinetic investigations of the phosphoric attack of Tunisian phosphate ore. Journal of Thermal Analysis and Calorimetry, 2018, 131, 3121-3132.	3.6	6
11	Standard Formation Enthalpy of Na2O–ZnO–P2O5 Series Glasses. Chemistry Africa, 2018, 1, 43-51.	2.4	5
12	Dissolution kinetics of fluorapatite in the hydrochloric acid solution. Journal of Thermal Analysis and Calorimetry, 2017, 129, 701-708.	3.6	18
13	Thermophysical study of the binary mixtures of N , N -dimethylacetamide with 1-propanol and 1-butanol. Journal of Molecular Liquids, 2017, 231, 168-173.	4.9	24
14	Standard enthalpy, entropy and Gibbs free energy of formation of «A» type carbonate phosphocalcium hydroxyapatites. Journal of Chemical Thermodynamics, 2017, 106, 84-94.	2.0	14
15	Preparation, characterization and thermochemistry of magnesium carbonate co-substituted fluorapatites. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2427-2438.	3.6	10
16	Effect of SrO content on the structure and properties of sodium-strontium metaphosphate glasses. Journal of Physics and Chemistry of Solids, 2017, 102, 62-68.	4.0	11
17	Density, Speed of Sound, Refractive Index, and Viscosity of the Binary Mixtures of <i>N</i> , <i>N</i> ,dimethylacetamide with Methanol and Ethanol. Journal of Chemical & Engineering Data, 2016, 61, 2946-2953.	1.9	29
18	Structure and thermochemical study of strontium sodium phosphate glasses. Journal of Non-Crystalline Solids, 2016, 447, 59-65.	3.1	16

ISMAIL KHATTECH

#	Article	IF	CITATIONS
19	Structural characterization and calorimetric dissolution behavior of Na2O CuO P2O5 glasses. Journal of Non-Crystalline Solids, 2016, 452, 144-152.	3.1	16
20	Thermochemistry and kinetics of the attack of magnesium-carbonate co-substituted fluorapatites by hydrochloric acid at different temperatures (25–55)°C. Thermochimica Acta, 2016, 646, 16-25.	2.7	8
21	Attack of Tunisian phosphate ore by phosphoric acid. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1671-1678.	3.6	9
22	Structural and thermochemical properties of sodium magnesium phosphate glasses. Journal of Alloys and Compounds, 2015, 632, 766-771.	5.5	47
23	Standard enthalpy, entropy and Gibbs free energy of formation of "B―type carbonate fluorapatites. Journal of Chemical Thermodynamics, 2015, 87, 29-33.	2.0	9
24	Structural and thermochemical study of Na2O–ZnO–P2O5 glasses. Journal of Non-Crystalline Solids, 2014, 390, 5-12.	3.1	80
25	Structural investigations and calorimetric dissolution of manganese phosphate glasses. Journal of Non-Crystalline Solids, 2014, 389, 66-71.	3.1	41
26	Thermochemistry and kinetics of silica dissolution in NaOH solutions: Effect of the alkali concentration. Thermochimica Acta, 2014, 594, 58-67.	2.7	22
27	Test and calibration processes for the differential reaction calorimeter (DRC): Application: Dissolution of calcium fluorapatite in the hydrochloric acid. Thermochimica Acta, 2014, 580, 85-92.	2.7	9
28	Thermochemical and kinetic studies of the acid attack of "B―type carbonate fluorapatites at different temperatures (25–55)°C. Thermochimica Acta, 2013, 565, 46-51.	2.7	15
29	Synthesis, characterization, and thermochemistry of acid attack of "B―type carbonate fluorapatites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 855-861.	3.6	22
30	Etude thermodynamique et cinétique de l'attaque de la fluorapatite par l'acide phosphorique. European Journal of Control, 2006, 31, 611-620.	2.6	12