Marcel D Baer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106801/publications.pdf

Version: 2024-02-01

201575 223716 2,152 49 27 h-index citations g-index papers

49 49 49 2420 docs citations times ranked citing authors all docs

46

#	Article	IF	CITATIONS
1	Regioselectivity mechanism of the $\langle i \rangle$ Thunbergia alata $\langle i \rangle$ î"6-16:0-acyl carrier protein desaturase. Plant Physiology, 2022, 188, 1537-1549.	2.3	3
2	Highly Bright and Photostable Two-Dimensional Nanomaterials Assembled from Sequence-Defined Peptoids., 2021, 3, 420-427.		16
3	Early-Stage Aggregation and Crystalline Interactions of Peptoid Nanomembranes. Journal of Physical Chemistry Letters, 2021, 12, 6126-6133.	2.1	14
4	Atomistic insight on structure and dynamics of spinach acyl carrier protein with substrate length. Biophysical Journal, 2021, 120, 3841-3853.	0.2	1
5	The Statistical Mechanics ofÂSolution-Phase Nucleation: CaCO\$\$_3\$\$ Revisited. Molecular Modeling and Simulation, 2021, , 101-122.	0.2	1
6	Role of Hydration in Magnesium versus Calcium Ion Pairing with Carboxylate: Solution and the Aqueous Interface. Journal of Physical Chemistry B, 2021, 125, 11308-11319.	1.2	13
7	Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder. Physical Chemistry Chemical Physics, 2020, 22, 10641-10652.	1.3	38
8	Solvent reaction coordinate for an SN2 reaction. Journal of Chemical Physics, 2020, 153, 024103.	1.2	11
9	Resolving Heterogeneous Dynamics of Excess Protons in Aqueous Solution with Rate Theory. Journal of Physical Chemistry B, 2020, 124, 5665-5675.	1.2	17
10	Visualization of Aluminum Ions at the Mica Water Interface Links Hydrolysis State-to-Surface Potential and Particle Adhesion. Journal of the American Chemical Society, 2020, 142, 6093-6102.	6.6	24
11	Experimental and DFT Calculated IR Spectra of Guests in Zeolites: Acyclic Olefins and Host–Guest Interactions. Journal of Physical Chemistry C, 2020, 124, 10561-10572.	1.5	8
12	Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air $\hat{a}\in\text{``water}$ interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14874-14880.	3.3	37
13	The Diverse Nature of Ion Speciation at the Nanoscale Hydrophobic/Water Interface. Journal of Physical Chemistry B, 2019, 123, 2414-2423.	1.2	16
14	Direct Observation of the Orientational Anisotropy of Buried Hydroxyl Groups inside Muscovite Mica. Journal of the American Chemical Society, 2019, 141, 2135-2142.	6.6	23
15	Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions. Journal of Physical Chemistry B, 2018, 122, 3519-3527.	1.2	27
16	Peptoid Backbone Flexibilility Dictates Its Interaction with Water and Surfaces: A Molecular Dynamics Investigation. Biomacromolecules, 2018, 19, 1006-1015.	2.6	28
17	Supersaturated calcium carbonate solutions are classical. Science Advances, 2018, 4, eaao6283.	4.7	116
18	Detecting the undetectable: The role of trace surfactant in the Jones-Ray effect. Journal of Chemical Physics, 2018, 149, 194702.	1.2	27

#	Article	IF	CITATIONS
19	Understanding the scale of the single ion free energy: A critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption. Journal of Chemical Physics, 2018, 148, 222819.	1.2	18
20	Tuning crystallization pathways through sequence engineering of biomimetic polymers. Nature Materials, 2017, 16, 767-774.	13.3	116
21	Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. Journal of Chemical Physics, 2017, 147, 161716.	1.2	42
22	Marcus Theory of Ion-Pairing. Journal of Chemical Theory and Computation, 2017, 13, 3470-3477.	2.3	53
23	Real single ion solvation free energies with quantum mechanical simulation. Chemical Science, 2017, 8, 6131-6140.	3.7	63
24	Mass density fluctuations in quantum and classical descriptions of liquid water. Journal of Chemical Physics, 2017, 146, 244501.	1.2	44
25	Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation. Journal of Physical Chemistry C, 2016, 120, 7597-7605.	1.5	36
26	lons interacting in solution: Moving from intrinsic to collective properties. Current Opinion in Colloid and Interface Science, 2016, 23, 58-65.	3.4	29
27	Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nature Communications, 2016, 7, 12252.	5.8	124
28	Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer. Journal of Physical Chemistry B, 2016, 120, 2198-2208.	1.2	18
29	Dependence of the Rate of LiF Ion-Pairing on the Description of Molecular Interaction. Journal of Physical Chemistry B, 2016, 120, 1749-1758.	1.2	13
30	Local Aqueous Solvation Structure Around Ca ²⁺ During Ca ²⁺ ···Cl [–] Pair Formation. Journal of Physical Chemistry B, 2016, 120, 1885-1893	3. ^{1.2}	40
31	Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics. Journal of Physical Chemistry Letters, 2014, 5, 2235-2240.	2.1	37
32	The Role of Broken Symmetry in Solvation of a Spherical Cavity in Classical and Quantum Water Models. Journal of Physical Chemistry Letters, 2014, 5, 2767-2774.	2.1	71
33	Toward a Unified Picture of the Water Self-Ions at the Air–Water Interface: A Density Functional Theory Perspective. Journal of Physical Chemistry B, 2014, 118, 8364-8372.	1.2	90
34	Persistent Ion Pairing in Aqueous Hydrochloric Acid. Journal of Physical Chemistry B, 2014, 118, 7211-7220.	1.2	53
35	An ab initio approach to understanding the specific ion effect. Faraday Discussions, 2013, 160, 89-101.	1.6	49
36	Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces. Annual Review of Physical Chemistry, 2013, 64, 339-359.	4.8	151

#	Article	IF	CITATIONS
37	Infrared Spectroscopy of Fluxional Molecules from (ab Initio) Molecular Dynamics: Resolving Large-Amplitude Motion, Multiple Conformations, and Permutational Symmetries. Journal of Chemical Theory and Computation, 2012, 8, 224-234.	2.3	48
38	Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air–Water Interface. Journal of Physical Chemistry Letters, 2012, 3, 1565-1570.	2.1	67
39	Generalized Normal Coordinates for the Vibrational Analysis of Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2011, 7, 2028-2039.	2.3	56
40	Toward an Understanding of the Specific Ion Effect Using Density Functional Theory. Journal of Physical Chemistry Letters, 2011, 2, 1088-1093.	2.1	114
41	Is Iodate a Strongly Hydrated Cation?. Journal of Physical Chemistry Letters, 2011, 2, 2650-2654.	2.1	68
42	Assigning Predissociation Infrared Spectra of Microsolvated Hydronium Cations H ₃ O ⁺ â<(H ₂) _{<i>n</i>} (<i>n</i> =0, 1, 2, 3) by Ab Initio Molecular Dynamics. ChemPhysChem, 2011, 12, 1906-1915.	1.0	22
43	Re-examining the properties of the aqueous vapor–liquid interface using dispersion corrected density functional theory. Journal of Chemical Physics, 2011, 135, 124712.	1.2	82
44	Theoretical Messenger Spectroscopy of Microsolvated Hydronium and Zundel Cations. Angewandte Chemie - International Edition, 2010, 49, 7346-7349.	7.2	38
45	Interpreting Vibrational Sum-Frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 7245-7249.	1.2	27
46	Probing the Hydration Structure of Polarizable Halides: A Multiedge XAFS and Molecular Dynamics Study of the Iodide Anion. Journal of Physical Chemistry B, 2010, 114, 12926-12937.	1.2	78
47	Interfacial Behavior of Perchlorate versus Chloride Ions in Aqueous Solutions. Journal of Physical Chemistry B, 2009, 113, 15843-15850.	1.2	36
48	Potential Protonâ€Release Channels in Bacteriorhodopsin. ChemPhysChem, 2008, 9, 2751-2758.	1.0	17
49	Spectral Signatures of the Pentagonal Water Cluster in Bacteriorhodopsin. ChemPhysChem, 2008, 9, 2703-2707.	1.0	32