Marc Lalande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10678412/publications.pdf Version: 2024-02-01

MARCLALANDE

#	Article	IF	CITATIONS
1	Specific ZNF274 binding interference at <i>SNORD116</i> activates the maternal transcripts in Prader-Willi syndrome neurons. Human Molecular Genetics, 2020, 29, 3285-3295.	1.4	13
2	Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons. Human Molecular Genetics, 2018, 27, 505-515.	1.4	36
3	Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics and Chromatin, 2016, 9, 18.	1.8	47
4	Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Molecular Autism, 2014, 5, 44.	2.6	83
5	Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Human Molecular Genetics, 2014, 23, 4674-4685.	1.4	55
6	Imprinted expression of UBE3A in non-neuronal cells from a Prader–Willi syndrome patient with an atypical deletion. Human Molecular Genetics, 2014, 23, 2364-2373.	1.4	58
7	Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics, 2012, 7, 71-82.	1.3	72
8	Neuronal chromatin dynamics of imprinting in development and disease. Journal of Cellular Biochemistry, 2011, 112, 365-373.	1.2	18
9	Prader–Willi syndrome, Snord115, and Htr2c editing. Neurogenetics, 2010, 11, 143-144.	0.7	16
10	Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11–q13. Neurobiology of Disease, 2010, 39, 13-20.	2.1	95
11	Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17668-17673.	3.3	286
12	Angelman Syndrome, a Genomic Imprinting Disorder of the Brain. Journal of Neuroscience, 2010, 30, 9958-9963.	1.7	97
13	Genomic organization and allelic expression of UBE3A in chicken. Gene, 2006, 383, 93-98.	1.0	17
14	Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Developmental Biology, 2005, 286, 587-600.	0.9	67
15	Regulation of the large (Â1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Research, 2004, 32, 3480-3492.	6.5	139
16	Analysis of the Set of GABAA Receptor Genes in the Human Genome. Journal of Biological Chemistry, 2004, 279, 41422-41435.	1.6	224
17	Flow Cytometry and FISH to Investigate Allele-Specific Replication Timing and Homologous Association of Imprinted Chromosomes. , 2002, 181, 181-192.		2
18	Phenotype–genotype correlation in 20 deletion and 20 non-deletion Angelman syndrome patients. European Journal of Human Genetics, 1999, 7, 131-139.	1.4	106

MARC LALANDE

#	Article	IF	CITATIONS
19	An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genetics, 1998, 19, 15-16.	9.4	292
20	Sporadic Imprinting Defects in Prader-Willi Syndrome and Angelman Syndrome: Implications for Imprint-Switch Models, Genetic Counseling, and Prenatal Diagnosis. American Journal of Human Genetics, 1998, 63, 170-180.	2.6	142
21	Human γ-Aminobutyric Acid-Type A Receptor α5 Subunit Gene (GABRA5): Characterization and Structural Organization of the 5′ Flanking Region. Genomics, 1997, 42, 378-387.	1.3	24
22	UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genetics, 1997, 15, 70-73.	9.4	1,194
23	The Angelman syndrome candidate gene, UBE3AIE6-AP, is imprinted in brain. Nature Genetics, 1997, 17, 14-15.	9.4	400
24	The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nature Genetics, 1997, 17, 357-361.	9.4	241
25	Synchronization of primary human fibroblasts and lymphocytes with mimosine. Cytotechnology, 1996, 18, 135-142.	0.7	1
26	Domain organization of allele–specific replication within the CABRB3 gene cluster requires a biparental 15q11–13 contribution. Nature Genetics, 1995, 9, 386-394.	9.4	68
27	Sex-specific meiotic recombination in the PraderWilli/Angelman syndrome imprinted region. Human Molecular Genetics, 1995, 4, 801-806.	1.4	105
28	Domain organization of allele-specific DNA replication within the GABA _A receptor gene cluster. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 766-767.	0.0	0
29	Molecular and clinical study of 61 Angelman syndrome patients. American Journal of Medical Genetics Part A, 1994, 52, 158-163.	2.4	103
30	The critical region for Angelman syndrome lies between D15S122 and D15S113. American Journal of Medical Genetics Part A, 1994, 53, 396-398.	2.4	13
31	Allele specificity of DNA replication timing in the Angelman/Prader–Willi syndrome imprinted chromosomal region. Nature Genetics, 1994, 6, 41-46.	9.4	198
32	In and around SNRPN. Nature Genetics, 1994, 8, 5-7.	9.4	16
33	FISH ordering of reference markers and of the gene for the α5 subunit of the γ-aminobutyric acid receptor (GABRA5) within the Angelman and Prader–Willi syndrome chromosomal regions. Human Molecular Genetics, 1993, 2, 183-189.	1.4	76
34	Molecular definition of the Prader — Willi syndrome chromosome region and orientation of the SNRPN gene. Human Molecular Genetics, 1993, 2, 1991-1994.	1.4	37
35	Cloning of the breakpoints of a submicroscopic deletion in an Angelman syndrome patient. Human Molecular Genetics, 1993, 2, 921-924.	1.4	32
36	Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor β3-subunit gene. Lancet, The, 1992, 339, 366-367.	6.3	96

MARC LALANDE

#	Article	IF	CITATIONS
37	Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader–Willi syndrome critical region. Nature Genetics, 1992, 2, 265-269.	9.4	271
38	Microdissection and Molecular Analysis of Proximal 15q. , 1992, , 13-16.		0
39	The syntenic relationship between the critical deletion region for the Prader-Willi/Angelman syndromes and proximal mouse chromosome 7. Genomics, 1991, 11, 773-776.	1.3	36
40	A new class of reversible cell cycle inhibitors. Cytometry, 1991, 12, 26-32.	1.8	88
41	Mimosine reversibly arrests cell cycle progression at the G1-S phase border. Cytometry, 1991, 12, 242-246.	1.8	89
42	Study of large DNA fragments in agarose gels by transient electric birefringence. Biopolymers, 1990, 29, 737-750.	1.2	6
43	A new compound which reversibly arrests T lymphocyte cell cycle near the G1S boundary. Experimental Cell Research, 1990, 188, 117-121.	1.2	32
44	A reversible arrest point in the late G1 phase of the mammalian cell cycle. Experimental Cell Research, 1990, 186, 332-339.	1.2	195
45	On the parental origin of the deletion in Angelman syndrome. Human Genetics, 1989, 83, 205-206.	1.8	34
46	Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature, 1989, 342, 281-285.	13.7	852
47	Construction, analysis, and application to 46,XY gonadal dysgenesis of a recombinant phage DNA library from flow-sorted human Y chromosomes. Cytometry, 1986, 7, 418-424.	1.8	18
48	Applications of fluorescence spectroscopy to molecular cytogenetics. Biopolymers, 1985, 24, 77-95.	1.2	6
49	Identification of inverted duplicated #15 chromosomes using bivariate flow cytometric analysis. Cytometry, 1985, 6, 1-6.	1.8	39
50	Development and use of metaphase chromosome flow-sorting methodology to obtain recombinant phage libraries enriched for parts of the human X chromosome. Cytometry, 1984, 5, 101-107.	1.8	43
51	New fluorochromes, compatible with high wavelength excitation, for flow cytometric analysis of cellular nucleic acids. Cytometry, 1984, 5, 339-347.	1.8	19
52	Isolation of human chromosome 13-specific DNA sequences cloned from flow sorted chromosomes and potentially linked to the retinoblastoma locus. Cancer Genetics and Cytogenetics, 1984, 13, 283-295.	1.0	113