
Ah-Ng Tony Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10678221/publications.pdf Version: 2024-02-01

AH-NC TONY KONC

#	Article	IF	CITATIONS
1	Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2. Journal of Applied Physiology, 2019, 127, 1267-1277.	1.2	12
2	Emerging Roles for Clinical Pharmacometrics in Cancer Precision Medicine. Current Pharmacology Reports, 2018, 4, 276-283.	1.5	10
3	DACT2 Epigenetic Stimulator Exerts Dual Efficacy for Colorectal Cancer Prevention and Treatment. Pharmacological Research, 2018, 129, 318-328.	3.1	31
4	Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS ONE, 2018, 13, e0208474.	1.1	26
5	Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochemical Pharmacology, 2017, 135, 22-34.	2.0	32
6	Cardioprotective effect of the xanthones from Gentianella acuta against myocardial ischemia/reperfusion injury in isolated rat heart. Biomedicine and Pharmacotherapy, 2017, 93, 626-635.	2.5	24
7	Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant. Oncotarget, 2016, 7, 20236-20248.	0.8	18
8	Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs. Molecules, 2016, 21, 975.	1.7	27
9	Regulation of Keap1–Nrf2 signaling: The role of epigenetics. Current Opinion in Toxicology, 2016, 1, 134-138.	2.6	52
10	Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNAâ€194. Molecular Nutrition and Food Research, 2016, 60, 1427-1436.	1.5	66
11	Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chemical Research in Toxicology, 2016, 29, 2071-2095.	1.7	77
12	Epigenetic reactivation of RASSF1A by phenethyl isothiocyanate (PEITC) and promotion of apoptosis in LNCaP cells. Pharmacological Research, 2016, 114, 175-184.	3.1	46
13	Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway. AAPS Journal, 2016, 18, 659-669.	2.2	26
14	Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1). Toxicological Sciences, 2016, 149, 202-212.	1.4	16
15	Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells. Journal of Nutritional Biochemistry, 2016, 33, 54-62.	1.9	59
16	Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells. Oncotarget, 2016, 7, 9907-9924.	0.8	18
17	Association of aberrant DNA methylation in Apcmin/+ mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq. Cell and Bioscience, 2015, 5, 24.	2.1	10
18	A sensitive liquid chromatography–mass spectrometry bioanalytical assay for a novel anticancer candidate – ZMC1. Biomedical Chromatography, 2015, 29, 1708-1714.	0.8	3

#	Article	IF	CITATIONS
19	Phytochemical Analysis and Anti-Inflammatory Activity of the Extracts of the African Medicinal Plant <i>Ximenia caffra</i> . Journal of Analytical Methods in Chemistry, 2015, 2015, 1-9.	0.7	24
20	"Curcumin, the King of Spices― Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases. Current Pharmacology Reports, 2015, 1, 129-139.	1.5	151
21	Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. Current Pharmacology Reports, 2015, 1, 245-257.	1.5	42
22	MicroRNAs: new Players in Cancer Prevention Targeting Nrf2, Oxidative Stress and Inflammatory Pathways. Current Pharmacology Reports, 2015, 1, 21-30.	1.5	39
23	Architecture of Signature miRNA Regulatory Networks in Cancer Chemoprevention. Current Pharmacology Reports, 2015, 1, 89-101.	1.5	9
24	Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochemical Pharmacology, 2015, 94, 69-78.	2.0	99
25	The complexity of the Nrf2 pathway: beyond the antioxidant response. Journal of Nutritional Biochemistry, 2015, 26, 1401-1413.	1.9	325
26	Pharmacokinetics and pharmacodynamics of 3,3′-diindolylmethane (DIM) in regulating gene expression of phase II drug metabolizing enzymes. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 401-408.	0.8	11
27	Epigenetic regulation of Keap1-Nrf2 signaling. Free Radical Biology and Medicine, 2015, 88, 337-349.	1.3	187
28	Induction of NRF2â€mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharmaceutics and Drug Disposition, 2015, 36, 440-451.	1.1	100
29	Flavonoids derived from liquorice suppress murine macrophage activation by up-regulating heme oxygenase-1 independent of Nrf2 activation. International Immunopharmacology, 2015, 28, 917-924.	1.7	48
30	Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3â€2-Diindolylmethane: Antioxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. Current Pharmacology Reports, 2015, 1, 179-196.	1.5	142
31	Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Current Topics in Medicinal Chemistry, 2015, 16, 697-713.	1.0	27
32	Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages. Cell and Bioscience, 2014, 4, 39.	2.1	72
33	Nrf2 Knockout Attenuates the Anti-Inflammatory Effects of Phenethyl Isothiocyanate and Curcumin. Chemical Research in Toxicology, 2014, 27, 2036-2043.	1.7	95
34	Blocking of JB6 Cell Transformation by Tanshinone IIA: Epigenetic Reactivation of Nrf2 Antioxidative Stress Pathway. AAPS Journal, 2014, 16, 1214-1225.	2.2	53
35	Nrf2 knockout enhances intestinal tumorigenesis in <i>Apc</i> ^{<i>min/+</i>} mice due to attenuation of antiâ€oxidative stress pathway while potentiates inflammation. Molecular Carcinogenesis, 2014, 53, 77-84.	1.3	72
36	Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product. Toxicology and Applied Pharmacology, 2014, 275, 113-121.	1.3	22

#	Article	IF	CITATIONS
37	Design and synthesis of novel iminothiazinylbutadienols and divinylpyrimidinethiones as ARE inducers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 940-943.	1.0	6
38	Requirement and Epigenetics Reprogramming of Nrf2 in Suppression of Tumor Promoter TPA-Induced Mouse Skin Cell Transformation by Sulforaphane. Cancer Prevention Research, 2014, 7, 319-329.	0.7	123
39	Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications. AAPS Journal, 2014, 16, 727-735.	2.2	112
40	Potent Inhibitory Effect of δ-Tocopherol on Prostate Cancer Cells Cultured in Vitro and Grown As Xenograft Tumors in Vivo. Journal of Agricultural and Food Chemistry, 2014, 62, 10752-10758.	2.4	26
41	Epigenetic DNA Methylation of Antioxidative Stress Regulator <i>NRF2</i> in Human Prostate Cancer. Cancer Prevention Research, 2014, 7, 1186-1197.	0.7	69
42	<i>In Vitro</i> and <i>in Vivo</i> Anti-inflammatory Effects of a Novel 4,6-Bis ((<i>E</i>)-4-hydroxy-3-methoxystyryl)-1-phenethylpyrimidine-2(1 <i>H</i>)-thione. Chemical Research in Toxicology, 2014, 27, 34-41.	1.7	9
43	The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food and Chemical Toxicology, 2014, 72, 303-311.	1.8	204
44	Antioxidant Defense and Hepatoprotection by Procyanidins from Almond (<i>Prunus amygdalus</i>) Skins. Journal of Agricultural and Food Chemistry, 2014, 62, 8668-8678.	2.4	28
45	Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models. Life Sciences, 2014, 113, 45-54.	2.0	20
46	Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Molecular Carcinogenesis, 2013, 52, 514-525.	1.3	54
47	Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2–ARE pathway. Food and Chemical Toxicology, 2013, 62, 869-875.	1.8	117
48	Effects of natural phytochemicals in <i>Angelica sinensis</i> (Danggui) on Nrf2â€mediated gene expression of phase II drug metabolizing enzymes and antiâ€inflammation. Biopharmaceutics and Drug Disposition, 2013, 34, 303-311.	1.1	52
49	A semi-mechanistic integrated toxicokinetic–toxicodynamic (TK/TD) model for arsenic(III) in hepatocytes. Journal of Theoretical Biology, 2013, 317, 244-256.	0.8	11
50	Epigenetic Reactivation of Nrf2 in Murine Prostate Cancer TRAMP C1 Cells by Natural Phytochemicals Z-Ligustilide and Radix <i>Angelica Sinensis</i> via Promoter CpG Demethylation. Chemical Research in Toxicology, 2013, 26, 477-485.	1.7	94
51	Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. , 2013, 137, 153-171.		210
52	Synergistic Activation of the Nrf2-Signaling Pathway by Glyceollins under Oxidative Stress Induced by Glutathione Depletion. Journal of Agricultural and Food Chemistry, 2013, 61, 4072-4078.	2.4	8
53	Discovery of a small-molecule inhibitor and cellular probe of Keap1–Nrf2 protein–protein interaction. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3039-3043.	1.0	167
54	Epigenetic Modifications of Nrf2 by 3,3′-diindolylmethane In Vitro in TRAMP C1 Cell Line and In Vivo TRAMP Prostate Tumors. AAPS Journal, 2013, 15, 864-874.	2.2	72

#	Article	IF	CITATIONS
55	Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochemical Pharmacology, 2013, 85, 1398-1404.	2.0	174
56	The Ras GTPase-activating-like Protein IQGAP1 Mediates Nrf2 Protein Activation via the Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase (ERK) Kinase (MEK)-ERK Pathway. Journal of Biological Chemistry, 2013, 288, 22378-22386.	1.6	39
57	Targeting Epigenetics for Cancer Prevention By Dietary Cancer Preventive Compounds—The Case of miRNA. Cancer Prevention Research, 2013, 6, 622-624.	0.7	12
58	Identification and Functional Studies of a New Nrf2 Partner IQGAP1: A Critical Role in the Stability and Transactivation of Nrf2. Antioxidants and Redox Signaling, 2013, 19, 89-101.	2.5	36
59	Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells. Journal of Traditional and Complementary Medicine, 2013, 3, 69-79.	1.5	35
60	Optimization of Fluorescently Labeled Nrf2 Peptide Probes and the Development of a Fluorescence Polarization Assay for the Discovery of Inhibitors of Keap1-Nrf2 Interaction. Journal of Biomolecular Screening, 2012, 17, 435-447.	2.6	92
61	A γ-tocopherol-Rich Mixture of Tocopherols MaintainsNrf2Expression in Prostate Tumors of TRAMP Mice via Epigenetic Inhibition of CpG Methylation,. Journal of Nutrition, 2012, 142, 818-823.	1.3	69
62	Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1281-1305.	0.9	414
63	Dietary Administration of δ- and γ-Tocopherol Inhibits Tumorigenesis in the Animal Model of Estrogen Receptor–Positive, but not HER-2 Breast Cancer. Cancer Prevention Research, 2012, 5, 1310-1320.	0.7	43
64	Does Vitamin E Prevent or Promote Cancer?. Cancer Prevention Research, 2012, 5, 701-705.	0.7	92
65	A Perspective on Dietary Phytochemicals and Cancer Chemoprevention: Oxidative Stress, Nrf2, and Epigenomics. Topics in Current Chemistry, 2012, 329, 133-162.	4.0	113
66	Pharmacodynamics of Ginsenosides: Antioxidant Activities, Activation of Nrf2, and Potential Synergistic Effects of Combinations. Chemical Research in Toxicology, 2012, 25, 1574-1580.	1.7	78
67	Role of Nutraceuticals on Nrf2 and Its Implication in Cancer Prevention. , 2012, , 61-75.		0
68	Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal. Cell and Bioscience, 2012, 2, 40.	2.1	81
69	Pharmacokinetics and Pharmacodynamics of Phase II Drug Metabolizing/Antioxidant Enzymes Gene Response by Anticancer Agent Sulforaphane in Rat Lymphocytes. Molecular Pharmaceutics, 2012, 9, 2819-2827.	2.3	24
70	Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 281-295.	1.5	45
71	tBHQ-Induced HO-1 Expression Is Mediated by Calcium through Regulation of Nrf2 Binding to Enhancer and Polymerase II to Promoter Region of HO-1. Chemical Research in Toxicology, 2011, 24, 670-676.	1.7	26
72	Kinetic Analyses of Keap1–Nrf2 Interaction and Determination of the Minimal Nrf2 Peptide Sequence Required for Keap1 Binding Using Surface Plasmon Resonance. Chemical Biology and Drug Design, 2011, 78, 1014-1021.	1.5	74

#	Article	IF	CITATIONS
73	Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochemical Pharmacology, 2011, 82, 1073-1078.	2.0	213
74	Nrf2â€mediated induction of phase 2 detoxifying enzymes by glyceollins derived from soybean exposed to <i>Aspergillus sojae</i> . Biotechnology Journal, 2011, 6, 525-536.	1.8	30
75	Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis. AAPS Journal, 2011, 13, 1-13.	2.2	146
76	Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells. AAPS Journal, 2011, 13, 606-614.	2.2	152
77	Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharmaceutics and Drug Disposition, 2011, 32, 289-300.	1.1	95
78	Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chinese Medicine, 2010, 5, 37.	1.6	45
79	Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory. Antioxidants and Redox Signaling, 2010, 13, 1679-1698.	2.5	170
80	Role of Nrf2 in Suppressing LPS-Induced Inflammation in Mouse Peritoneal Macrophages by Polyunsaturated Fatty Acids Docosahexaenoic Acid and Eicosapentaenoic Acid. Molecular Pharmaceutics, 2010, 7, 2185-2193.	2.3	102
81	Structural Influence of Isothiocyanates on the Antioxidant Response Element (ARE)-Mediated Heme Oxygenase-1 (HO-1) Expression. Pharmaceutical Research, 2008, 25, 836-844.	1.7	62
82	Murine Prostate Cancer Inhibition by Dietary Phytochemicals—Curcumin and Phenyethylisothiocyanate. Pharmaceutical Research, 2008, 25, 2181-2189.	1.7	82
83	Chemoprevention of familial adenomatous polyposis in <i>Apc</i> ^{Min/+} mice by phenethyl isothiocyanate (PEITC). Molecular Carcinogenesis, 2008, 47, 321-325.	1.3	44
84	PEITC Induces G1 Cell Cycle Arrest on HT-29 Cells Through the Activation of p38 MAPK Signaling Pathway. AAPS Journal, 2008, 10, 277-81.	2.2	34
85	Anticarcinogenesis by dietary phytochemicals: Cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells. Food and Chemical Toxicology, 2008, 46, 1257-1270.	1.8	106
86	Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Molecular Cancer Therapeutics, 2008, 7, 2609-2620.	1.9	163
87	Dietary Factors in Food. Oxidative Stress and Disease, 2008, , .	0.3	0
88	Chemoprevention of Familial Adenomatous Polyposis by Natural Dietary Compounds Sulforaphane and Dibenzoylmethane Alone and in Combination in <i>Apc</i> Min/+ Mouse. Cancer Research, 2007, 67, 9937-9944.	0.4	151
89	3-Morpholinopropyl isothiocyanate is a novel synthetic isothiocyanate that strongly induces the antioxidant response element-dependent Nrf2-mediated detoxifying/antioxidant enzymes in vitro and in vivo. Carcinogenesis, 2007, 29, 594-599.	1.3	18
90	Application of Pharmacogenomics to Dietary Cancer Chemoprevention. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2007, 5, 190-200.	0.3	1

#	Article	IF	CITATIONS
91	Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicology Letters, 2007, 168, 21-39.	0.4	56
92	Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacologica Sinica, 2007, 28, 459-472.	2.8	147
93	Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta Pharmacologica Sinica, 2007, 28, 1409-1421.	2.8	125
94	Special issue on "molecular targets, biomarkers and animal models for anti-cancer pharmacological research: potentials and challenges from chemoprevention to chemotherapeutic treatment". Acta Pharmacologica Sinica, 2007, 28, 1261-1261.	2.8	1
95	Mechanism of Action of Sulforaphane: Inhibition of p38 Mitogen-Activated Protein Kinase Isoforms Contributing to the Induction of Antioxidant Response Element–Mediated Heme Oxygenase-1 in Human Hepatoma HepG2 Cells. Cancer Research, 2006, 66, 8804-8813.	0.4	272
96	Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (â^'/â^') mice. Cancer Letters, 2006, 243, 170-192.	3.2	225
97	Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with β-phenylethyl isothiocyanate and curcumin. Carcinogenesis, 2006, 27, 475-482.	1.3	132
98	Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sciences, 2006, 79, 1944-1955.	2.0	124
99	Nrf2: A Potential Molecular Target for Cancer Chemoprevention by Natural Compounds. Antioxidants and Redox Signaling, 2006, 8, 99-106.	2.5	337
100	Toxicogenomics in Drug Discovery and Drug Development: Potential Applications and Future Challenges. Pharmaceutical Research, 2006, 23, 1659-1664.	1.7	35
101	Pharmacogenomics of Phenolic Antioxidant Butylated Hydroxyanisole (BHA) in the Small Intestine and Liver of Nrf2 Knockout and C57BL/6J Mice. Pharmaceutical Research, 2006, 23, 2621-2637.	1.7	55
102	p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemotherapy and Pharmacology, 2006, 57, 317-327.	1.1	122
103	Modulation of activator protein-1 (AP-1) and MAPK pathway by flavonoids in human prostate cancer PC3 cells. Archives of Pharmacal Research, 2006, 29, 633-644.	2.7	69
104	In vivo pharmacokinetics, activation of MAPK signaling and induction of phase II/III drug metabolizing enzymes/transporters by cancer chemopreventive compound BHA in the mice. Archives of Pharmacal Research, 2006, 29, 911-920.	2.7	20
105	Pharmacogenomics of cancer chemopreventive isothiocyanate compound sulforaphane in the interational polyps of ApcMin/+ mice. Biopharmaceutics and Drug Disposition, 2006, 27, 407-420.	1.1	50
106	Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Molecular Carcinogenesis, 2006, 45, 841-850.	1.3	110
107	Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis, 2006, 27, 2038-2046.	1.3	153
108	Combined Inhibitory Effects of Curcumin and Phenethyl Isothiocyanate on the Growth of Human PC-3 Prostate Xenografts in Immunodeficient Mice. Cancer Research, 2006, 66, 613-621.	0.4	198

#	Article	IF	CITATIONS
109	ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis, 2006, 27, 437-445.	1.3	163
110	Modulation of nuclear factor E2-related factor 2–mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Molecular Cancer Therapeutics, 2006, 5, 39-51.	1.9	167
111	Inhibition of 7,12-Dimethylbenz(a)anthracene-Induced Skin Tumorigenesis in C57BL/6 Mice by Sulforaphane Is Mediated by Nuclear Factor E2–Related Factor 2. Cancer Research, 2006, 66, 8293-8296.	0.4	351
112	Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Molecular Cancer Therapeutics, 2006, 5, 1918-1926.	1.9	245
113	Regulation of Nrf2 Transactivation Domain Activity by p160 RAC3/SRC3 and Other Nuclear Co-Regulators. BMB Reports, 2006, 39, 304-310.	1.1	33
114	Suppression of NF-κB and NF-κB-regulated gene expression by sulforaphane and PEITC through IκBα, IKK pathway in human prostate cancer PC-3 cells. Oncogene, 2005, 24, 4486-4495.	2.6	280
115	Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacal Research, 2005, 28, 249-268.	2.7	1,069
116	Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends in Pharmacological Sciences, 2005, 26, 318-326.	4.0	232
117	Regulation of Nrf2, NF-κB, and AP-1 Signaling Pathways by Chemopreventive Agents. Antioxidants and Redox Signaling, 2005, 7, 1648-1663.	2.5	93
118	Chemopreventive functions of isothiocyanates. Drug News and Perspectives, 2005, 18, 445.	1.9	83
119	Differential Expression and Stability of Endogenous Nuclear Factor E2-related Factor 2 (Nrf2) by Natural Chemopreventive Compounds in HepG2 Human Hepatoma Cells. BMB Reports, 2005, 38, 167-176.	1.1	94
120	Biological Properties of Monomeric and Polymeric Catechins: Green Tea Catechins and Procyanidins. Pharmaceutical Biology, 2004, 42, 84-93.	1.3	52
121	Biological Properties of Monomeric and Polymeric Catechins: Green Tea Catechins and Procyanidins. Archives of Physiology and Biochemistry, 2004, 42, 84-93.	1.0	2
122	Activation of MAP kinases, apoptosis and nutrigenomics of gene expression elicited by dietary cancer-prevention compounds. Nutrition, 2004, 20, 83-88.	1.1	68
123	Modulation of AP-1 by Natural Chemopreventive Compounds in Human Colon HT-29 Cancer Cell Line. Pharmaceutical Research, 2004, 21, 649-660.	1.7	81
124	Modulatory Properties of Various Natural Chemopreventive Agents on the Activation of NF-κB Signaling Pathway. Pharmaceutical Research, 2004, 21, 661-670.	1.7	238
125	Antioxidants and oxidants regulated signal transduction pathways. Biochemical Pharmacology, 2002, 64, 765-770.	2.0	404
126	Resveratrol Inhibits Phorbol Ester and UV-Induced Activator Protein 1 Activation by Interfering with Mitogen-Activated Protein Kinase Pathways. Molecular Pharmacology, 2001, 60, 217-224.	1.0	137

0

#	Article	IF	CITATIONS
127	Signal Transduction Events Elicited by Natural Products that Function as Cancer Chemopreventive Agents. Pharmaceutical Biology, 2001, 39, 83-107.	1.3	9
128	Quinacrine induces cytochrome c-dependent apoptotic signaling in human cervical carcinoma cells. Archives of Pharmacal Research, 2001, 24, 126-135.	2.7	16
129	Signal transduction events elicited by cancer prevention compounds. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 480-481, 231-241.	0.4	144
130	Signal transduction events elicited by natural products: Role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Archives of Pharmacal Research, 2000, 23, 1-16.	2.7	247
131	Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene, 1999, 18, 377-384.	2.6	143
132	Pharmacodynamics and toxicodynamics of drug action: signaling in cell survival and cell death. Pharmaceutical Research, 1999, 16, 790-798.	1.7	19
133	cDNA cloning of the mouse bilirubin/phenol family of UDP-glucuronosyltransferase (mUGTbr2-like). Pharmaceutical Research, 1997, 14, 662-666.	1.7	3
134	Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Letters, 1996, 107, 73-81.	3.2	108
135	Regulation of gene expression of various Phase I and Phase II drug-metabolizing enzymes by tamoxifen in rat liver. Biochemical Pharmacology, 1996, 52, 1561-1568.	2.0	28
136	Transcription regulation of rat glutathione S-transferase Ya subunit gene expression by chemopreventive agents. Pharmaceutical Research, 1996, 13, 1043-1048.	1.7	16
137	Losartan Does Not Affect the Pharmacokinetics and Pharmacodynamics of Warfarin. Journal of Clinical Pharmacology, 1995, 35, 1008-1015.	1.0	28
138	Differential expression of the phenol family of UDP-glucuronosyltransferases in hepatoma cell lines. Pharmaceutical Research, 1995, 12, 309-312.	1.7	5
139	Molecular cloning of three sulfotransferase cDNAs from mouse liver. Chemico-Biological Interactions, 1994, 92, 161-168.	1.7	20
140	Molecular cloning of cDNA encoding the phenol/aryl form of sulfotransferase (mSTpl) from mouse liver. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1171, 315-318.	2.4	33
141	Molecular cloning of the alcohol/hydroxysteroid form (mSTa1) of sulfotransferase from mouse liver. Pharmaceutical Research, 1993, 10, 627-630.	1.7	31
142	Molecular cloning of two cDNAs encoding the mouse bilirubin/phenol family of UDP-glucuronosyltransferases (mUGTBr/p). Pharmaceutical Research, 1993, 10, 461-465.	1.7	19
143	Molecular cloning of the alcohol/hydroxysteroid form (hSTa) of sulfotransferase from human liver. Biochemical and Biophysical Research Communications, 1992, 187, 448-454.	1.0	62

Application of Toxicogenomics in Predicting Hepatotoxicity– Potentials and Challenges. , 0, , 447-463.