Ganghun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10677152/publications.pdf

Version: 2024-02-01

1163117 1588992 11 323 8 8 citations h-index g-index papers 11 11 11 250 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and analysis of multi-wavelength diffractive optics. Optics Express, 2012, 20, 2814.	3.4	125
2	Increased Photovoltaic Power Output via Diffractive Spectrum Separation. Physical Review Letters, 2013, 110, 123901.	7.8	51
3	An ultra-small three dimensional computational microscope. Applied Physics Letters, 2014, 105, .	3.3	34
4	Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy. Scientific Reports, 2017, 7, 44791.	3.3	33
5	Lensless photography with only an image sensor. Applied Optics, 2017, 56, 6450.	1.8	32
6	Computational imaging enables a "see-through―lens-less camera. Optics Express, 2018, 26, 22826.	3.4	19
7	Cannula-based computational fluorescence microscopy. Applied Physics Letters, 2015, 106, .	3.3	18
8	Numerical analysis of computational-cannula microscopy. Applied Optics, 2017, 56, D1.	2.1	9
9	Fast imaging in cannula microscope using orthogonal matching pursuit. , 2015, , .		2
10	Deep Tissue Fluorescent Imaging via Computational Cannula Microscopy. , 2017, , .		0
11	Computational Cannula Microscopy: Fluorescent Imaging Through Ultra-Thin Glass Needle., 2017,,.		O