Nathan Karin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10676698/publications.pdf Version: 2024-02-01

Νλτμανι Καρινι

#	Article	IF	CITATIONS
1	Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Cell Stem Cell, 2021, 28, 1248-1261.e8.	5.2	63
2	Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones?. Cancers, 2021, 13, 6317.	1.7	17
3	The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Frontiers in Immunology, 2020, 11, 557586.	2.2	32
4	CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Frontiers in Immunology, 2020, 11, 976.	2.2	133
5	Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine, 2018, 109, 24-28.	1.4	153
6	Chemokines and cancer: new immune checkpoints for cancer therapy. Current Opinion in Immunology, 2018, 51, 140-145.	2.4	109
7	CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Research, 2018, 78, 157-167.	0.4	127
8	The role of CCR5 in directing the mobilization and biological function of CD11b+Gr1+Ly6Clow polymorphonuclear myeloid cells in cancer. Cancer Immunology, Immunotherapy, 2018, 67, 1949-1953.	2.0	18
9	Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity. Frontiers in Immunology, 2018, 9, 623.	2.2	14
10	Adoptive Transfer of mRNA-Transfected T Cells Redirected against Diabetogenic CD8ÂT Cells Can Prevent Diabetes. Molecular Therapy, 2017, 25, 456-464.	3.7	36
11	CCR8 ⁺ FOXp3 ⁺ T _{reg} cells as master drivers of immune regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6086-6091.	3.3	173
12	CCR5 Directs the Mobilization of CD11b+Gr1+Ly6Clow Polymorphonuclear Myeloid Cells from the Bone Marrow to the Blood to Support Tumor Development. Cell Reports, 2017, 21, 2212-2222.	2.9	83
13	The antiangiogenic role of the pro-inflammatory cytokine interleukin-31. Oncotarget, 2017, 8, 16430-16444.	0.8	24
14	Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflammation Research, 2016, 65,	1.6	7
15	Biased signaling pathways via CXCR3 control the development and function of CD4+ T cell subsets. Journal of Leukocyte Biology, 2016, 99, 857-862.	1.5	67
16	The Role of Chemokines in Shaping the Balance Between CD4+ T Cell Subsets and Its Therapeutic Implications in Autoimmune and Cancer Diseases. Frontiers in Immunology, 2015, 6, 609.	2.2	46
17	The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. International Immunopharmacology, 2015, 28, 829-835.	1.7	19
18	CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. Journal of Clinical Investigation, 2014, 124, 2009-2022.	3.9	145

NATHAN KARIN

#	Article	IF	CITATIONS
19	The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. Journal of Leukocyte Biology, 2013, 93, 51-61.	1.5	130
20	Dissecting the Autocrine and Paracrine Roles of the CCR2-CCL2 Axis in Tumor Survival and Angiogenesis. PLoS ONE, 2012, 7, e28305.	1.1	44
21	Gain-of-function human <i>STAT1</i> mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. Journal of Experimental Medicine, 2011, 208, 1635-1648.	4.2	739
22	The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease. Journal of Leukocyte Biology, 2010, 88, 463-473.	1.5	187
23	Predominant Expression of CCL2 at the Tumor Site of Prostate Cancer Patients Directs a Selective Loss of Immunological Tolerance to CCL2 That Could Be Amplified in a Beneficial Manner. Journal of Immunology, 2010, 184, 1092-1101.	0.4	38
24	A Fusion Protein Encoding the Second Extracellular Domain of CCR5 Arrests Chemokine-Induced Cosignaling and Effectively Suppresses Ongoing Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 185, 2589-2599.	0.4	20
25	Antigen-Specific CD25â^'Foxp3â^'IFN-γhighCD4+ T Cells Restrain the Development of Experimental Allergic Encephalomyelitis by Suppressing Th17. American Journal of Pathology, 2010, 176, 2764-2775.	1.9	14
26	A Novel Recombinant Fusion Protein Encoding a 20-Amino Acid Residue of the Third Extracellular (E3) Domain of CCR2 Neutralizes the Biological Activity of CCL2. Journal of Immunology, 2009, 183, 732-739.	0.4	23
27	Selective Autoantibody Production against CCL3 Is Associated with Human Type 1 Diabetes Mellitus and Serves As a Novel Biomarker for Its Diagnosis. Journal of Immunology, 2009, 182, 8104-8109.	0.4	30
28	CXCL12 (SDF-1α) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. Journal of Experimental Medicine, 2008, 205, 2643-2655.	4.2	146
29	Beneficial autoimmunity participates in the regulation of rheumatoid arthritis. Frontiers in Bioscience - Landmark, 2006, 11, 368.	3.0	10
30	Coadministration of Plasmid DNA Constructs Encoding an Encephalitogenic Determinant and IL-10 Elicits Regulatory T Cell-Mediated Protective Immunity in the Central Nervous System. Journal of Immunology, 2006, 177, 8241-8247.	0.4	21
31	Targeted Overexpression of IL-18 Binding Protein at the Central Nervous System Overrides Flexibility in Functional Polarization of Antigen-Specific Th2 Cells. Journal of Immunology, 2005, 174, 4307-4315.	0.4	19
32	Suppression of Ongoing Adjuvant-Induced Arthritis by Neutralizing the Function of the p28 Subunit of IL-27. Journal of Immunology, 2004, 173, 1171-1178.	0.4	83
33	Suppression of Ongoing Experimental Autoimmune Encephalomyelitis by Neutralizing the Function of the p28 Subunit of IL-27. Journal of Immunology, 2004, 173, 6465-6471.	0.4	59
34	Induction of protective therapy for autoimmune diseases by targeted DNA vaccines encoding pro-inflammatory cytokines and chemokines. Current Opinion in Molecular Therapeutics, 2004, 6, 27-33.	2.8	8
35	Beneficial Autoimmunity to Proinflammatory Mediators Restrains the Consequences of Self-Destructive Immunity. Immunity, 2003, 19, 679-688.	6.6	68
36	Treatment of autoimmune diseases by targeted DNA vaccines encoding proinflammatory mediators. , 2003, , 83-93.		0

NATHAN KARIN

#	Article	IF	CITATIONS
37	Targeting the Function of IFN-Î ³ -Inducible Protein 10 Suppresses Ongoing Adjuvant Arthritis. Journal of Immunology, 2002, 169, 2685-2693.	0.4	126
38	Plasmid DNA Encoding IFN-γ-Inducible Protein 10 Redirects Antigen-Specific T Cell Polarization and Suppresses Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 168, 5885-5892.	0.4	108
39	Tr1 cell–dependent active tolerance blunts the pathogenic effects of determinant spreading. Journal of Clinical Investigation, 2002, 110, 701-710.	3.9	47
40	Tr1 cell–dependent active tolerance blunts the pathogenic effects of determinant spreading. Journal of Clinical Investigation, 2002, 110, 701-710.	3.9	31
41	A Targeted DNA Vaccine Augments the Natural Immune Response to Self TNF-α and Suppresses Ongoing Adjuvant Arthritis. Journal of Immunology, 2000, 165, 5860-5866.	0.4	51
42	A targeted DNA vaccine encoding Fas ligand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2000, 106, 671-679.	3.9	61
43	C-C chemokine–encoding DNA vaccines enhance breakdown of tolerance to their gene products and treat ongoing adjuvant arthritis. Journal of Clinical Investigation, 2000, 106, 361-371.	3.9	92
44	Expansion of neonatal tolerance to self in adult life: I. The role of a bacterial adjuvant in tolerance spread. International Immunology, 1999, 11, 899-906.	1.8	9
45	Expansion of neonatal tolerance to self in adult life: II. Tolerance preferentially spreads in an intramolecular manner. International Immunology, 1999, 11, 907-913.	1.8	10
46	Prevention of Experimental Autoimmune Encephalomyelitis by MIP-1α and MCP-1 Naked DNA Vaccines. Journal of Autoimmunity, 1999, 13, 21-29.	3.0	72
47	Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature, 1996, 379, 343-346.	13.7	382
48	Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature, 1992, 356, 63-66.	13.7	1,668
49	Tolerance to experimental contact sensitivity induced by T cell vaccination. European Journal of Immunology, 1990, 20, 2083-2087.	1.6	10