## Paolo P Pescarmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067579/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. Journal of<br>Materials Chemistry A, 2014, 2, 4085-4110.                                                                           | 10.3 | 683       |
| 2  | CO <sub>2</sub> -fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21, 406-448.                                                                                            | 9.0  | 574       |
| 3  | Fast and Selective Sugar Conversion to Alkyl Lactate and Lactic Acid with Bifunctional Carbon–Silica<br>Catalysts. Journal of the American Chemical Society, 2012, 134, 10089-10101.                                        | 13.7 | 337       |
| 4  | Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2.<br>Catalysis Science and Technology, 2012, 2, 2169.                                                                         | 4.1  | 336       |
| 5  | Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green<br>Chemistry, 2012, 14, 1611.                                                                                            | 9.0  | 177       |
| 6  | Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chemistry, 2010, 12, 1083.                                                                                                                               | 9.0  | 170       |
| 7  | Green polycarbonates prepared by the copolymerization of CO <sub>2</sub> with epoxides. Journal of Applied Polymer Science, 2014, 131, .                                                                                    | 2.6  | 153       |
| 8  | Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chemistry, 2011, 13, 1175.                                                                                                       | 9.0  | 152       |
| 9  | High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chemistry, 2013, 15, 3083.                                           | 9.0  | 135       |
| 10 | N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2. Applied Catalysis B: Environmental, 2015, 176-177, 212-224. | 20.2 | 117       |
| 11 | New Iron Pyridylaminoâ€Bis(Phenolate) Catalyst for Converting CO <sub>2</sub> into Cyclic Carbonates<br>and Crossâ€Linked Polycarbonates. ChemSusChem, 2015, 8, 1034-1042.                                                  | 6.8  | 111       |
| 12 | Review: Oligomeric Silsesquioxanes: Synthesis, Characterization and Selected Applications. Australian<br>Journal of Chemistry, 2001, 54, 583.                                                                               | 0.9  | 107       |
| 13 | Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends.<br>Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100457.                                                       | 5.9  | 91        |
| 14 | A highly active Zn(salphen) catalyst for production of organic carbonates in a green CO2 medium.<br>Catalysis Science and Technology, 2012, 2, 2231.                                                                        | 4.1  | 90        |
| 15 | Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO <sub>2</sub> and epoxides into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1598-1607.     | 4.1  | 88        |
| 16 | Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Applied Catalysis B: Environmental, 2018, 226, 509-522.                                   | 20.2 | 83        |
| 17 | Applicability of Organic Carbonates as Green Solvents for Membrane Preparation. ACS Sustainable Chemistry and Engineering, 2019, 7, 13774-13785.                                                                            | 6.7  | 79        |
| 18 | Multilayered Supported Ionic Liquids as Catalysts for Chemical Fixation of Carbon Dioxide: A<br>Highâ€Throughput Study in Supercritical Conditions. ChemSusChem, 2011, 4, 1830-1837.                                        | 6.8  | 77        |

PAOLO P PESCARMONA

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Strategies for Enhancing the Catalytic Performance of Metal–Organic Frameworks in the Fixation of CO <sub>2</sub> into Cyclic Carbonates. ChemSusChem, 2017, 10, 1283-1291.                                                                        | 6.8  | 72        |
| 20 | Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catalysis Science and Technology, 2014, 4, 2293-2301.                                                                              | 4.1  | 67        |
| 21 | Pt/ZrO <sub>2</sub> Prepared by Atomic Trapping: An Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene. ACS Catalysis, 2019, 9, 9953-9963.                                    | 11.2 | 53        |
| 22 | Efficient and Easily Reusable Metal-Free Heterogeneous Catalyst Beads for the Conversion of CO <sub>2</sub> into Cyclic Carbonates in the Presence of Water as Hydrogen-Bond Donor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7993-8003. | 6.7  | 51        |
| 23 | Sn-Based Electrocatalyst Stability: A Crucial Piece to the Puzzle for the Electrochemical CO <sub>2</sub> Reduction toward Formic Acid. ACS Energy Letters, 2021, 6, 4317-4327.                                                                    | 17.4 | 51        |
| 24 | Novel Transition-Metal-Free Heterogeneous Epoxidation Catalysts Discovered by Means of<br>High-Throughput Experimentation. Chemistry - A European Journal, 2007, 13, 6562-6572.                                                                    | 3.3  | 49        |
| 25 | High-performance membranes with full pH-stability. RSC Advances, 2018, 8, 8813-8827.                                                                                                                                                               | 3.6  | 49        |
| 26 | Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Applied Catalysis B: Environmental, 2020, 263, 118273.                                                           | 20.2 | 48        |
| 27 | Extra-small porous Sn-silicate nanoparticles as catalysts for the synthesis of lactates. Journal of<br>Catalysis, 2014, 314, 56-65.                                                                                                                | 6.2  | 47        |
| 28 | Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Applied Catalysis B: Environmental, 2014, 147, 330-339.                                                             | 20.2 | 46        |
| 29 | The Role of Water Revisited and Enhanced: A Sustainable Catalytic System for the Conversion of CO <sub>2</sub> into Cyclic Carbonates under Mild Conditions. ChemSusChem, 2019, 12, 3856-3863.                                                     | 6.8  | 46        |
| 30 | High surface area, nanostructured boehmite and alumina catalysts: Synthesis and application in the sustainable epoxidation of alkenes. Applied Catalysis A: General, 2019, 571, 180-187.                                                           | 4.3  | 43        |
| 31 | Ga-MCM-41 nanoparticles: Synthesis and application of versatile heterogeneous catalysts. Catalysis<br>Today, 2014, 235, 184-192.                                                                                                                   | 4.4  | 41        |
| 32 | Osmium silsesquioxane as model compound and homogeneous catalyst for the dihydroxylation of alkenes. Journal of Molecular Catalysis A, 2004, 220, 37-42.                                                                                           | 4.8  | 37        |
| 33 | The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol. Electrochimica Acta, 2013, 111, 405-410.                                                                        | 5.2  | 37        |
| 34 | Vapor-fed solar hydrogen production exceeding 15% efficiency using earth abundant catalysts and anion exchange membrane. Sustainable Energy and Fuels, 2017, 1, 2061-2065.                                                                         | 4.9  | 37        |
| 35 | A Stateâ€ofâ€theâ€Art Update on Integrated CO <sub>2</sub> Capture and Electrochemical Conversion<br>Systems. ChemElectroChem, 2022, 9, .                                                                                                          | 3.4  | 37        |
| 36 | Easily recoverable titanosilicate zeolite beads with hierarchical porosity: Preparation and application as oxidation catalysts. Journal of Catalysis, 2016, 333, 139-148.                                                                          | 6.2  | 36        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly Selective Single omponent Formazanate Ferrate(II) Catalysts for the Conversion of CO 2 into<br>Cyclic Carbonates. ChemSusChem, 2019, 12, 3635-3641.                                                                                    | 6.8  | 33        |
| 38 | Multifunctional Heterogeneous Catalysts for the Selective Conversion of Glycerol into Methyl Lactate. ACS Sustainable Chemistry and Engineering, 2018, 6, 10923-10933.                                                                        | 6.7  | 32        |
| 39 | Doped ordered mesoporous carbons as novel, selective electrocatalysts for the reduction of nitrobenzene to aniline. Journal of Materials Chemistry A, 2018, 6, 13397-13411.                                                                   | 10.3 | 31        |
| 40 | Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H <sub>2</sub> –NO fuel cell. Green Chemistry, 2016, 18, 1547-1559.                                                                | 9.0  | 30        |
| 41 | Pure and Alloyed Copperâ€Based Nanoparticles Supported on Activated Carbon: Synthesis and<br>Electrocatalytic Application in the Reduction of Nitrobenzene. ChemElectroChem, 2014, 1, 1198-1210.                                              | 3.4  | 28        |
| 42 | The inhibition of the proton donor ability of bicarbonate promotes the electrochemical conversion of CO2 in bicarbonate solutions. Journal of CO2 Utilization, 2021, 48, 101521.                                                              | 6.8  | 26        |
| 43 | Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Applied Catalysis A: General, 2021, 621, 118179.                              | 4.3  | 23        |
| 44 | A High-Throughput Experimentation Study of the Synthesis of Lactates with Solid Acid Catalysts.<br>Topics in Catalysis, 2010, 53, 77-85.                                                                                                      | 2.8  | 21        |
| 45 | Electrically-Responsive Reversible Polyketone/MWCNT Network through Diels-Alder Chemistry.<br>Polymers, 2018, 10, 1076.                                                                                                                       | 4.5  | 19        |
| 46 | Non-covalent polyhedral oligomeric silsesquioxane-polyoxometalates as<br>inorganic–organic–inorganic hybrid materials for visible-light photocatalytic splitting of water.<br>Inorganic Chemistry Frontiers, 2018, 5, 2666-2677.              | 6.0  | 19        |
| 47 | Bio-Based Chemicals: Selective Aerobic Oxidation of Tetrahydrofuran-2,5-dimethanol to<br>Tetrahydrofuran-2,5-dicarboxylic Acid Using Hydrotalcite-Supported Gold Catalysts. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 4647-4656. | 6.7  | 19        |
| 48 | Influence of the Composition and Preparation of the Rotating Disk Electrode on the Performance of<br>Mesoporous Electrocatalysts in the Alkaline Oxygen Reduction Reaction. ChemElectroChem, 2018, 5,<br>119-128.                             | 3.4  | 17        |
| 49 | A Nonâ€Aqueous Synthesis of TiO <sub>2</sub> /SiO <sub>2</sub> Composites in Supercritical CO <sub>2</sub> for the Photodegradation of Pollutants. ChemSusChem, 2011, 4, 1457-1463.                                                           | 6.8  | 16        |
| 50 | Niobium oxide prepared through a novel supercritical-CO <sub>2</sub> -assisted method as a highly active heterogeneous catalyst for the synthesis of azoxybenzene from aniline. Green Chemistry, 2019, 21, 5852-5864.                         | 9.0  | 16        |
| 51 | Base-free conversion of glycerol to methyl lactate using a multifunctional catalytic system<br>consisting of Au–Pd nanoparticles on carbon nanotubes and Sn-MCM-41-XS. Green Chemistry, 2019, 21,<br>4115-4126.                               | 9.0  | 15        |
| 52 | Effects of Benzyl-Functionalized Cationic Surfactants on the Inhibition of the Hydrogen Evolution<br>Reaction in CO <sub>2</sub> Reduction Systems. ACS Applied Materials & Interfaces, 2021, 13,<br>56205-56216.                             | 8.0  | 15        |
| 53 | Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO <sub>2</sub> to CO in a continuous-flow electrolyzer. Sustainable Energy and Fuels, 2020, 4, 1296-1311.                                                | 4.9  | 13        |
| 54 | Novel non-ionic surfactants synthesised through the reaction of CO2 with long alkyl chain epoxides.<br>Journal of CO2 Utilization, 2021, 50, 101577.                                                                                          | 6.8  | 13        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An efficient method to prepare supported bismuth nanoparticles as highly selective electrocatalyst for the conversion of CO <sub>2</sub> into formate. Chemical Communications, 2020, 56, 14992-14995.                             | 4.1 | 11        |
| 56 | Oneâ€pot Fixation of CO <sub>2</sub> into Glycerol Carbonate using lonâ€Exchanged Amberlite Resin<br>Beads as Efficient Metalâ€free Heterogeneous Catalysts. ChemCatChem, 2021, 13, 475-486.                                       | 3.7 | 11        |
| 57 | Imidazolium-based titanosilicate nanospheres as active catalysts in carbon dioxide conversion:<br>Towards a cascade reaction from alkenes to cyclic carbonates. Journal of CO2 Utilization, 2021, 48,<br>101529.                   | 6.8 | 9         |
| 58 | Steering Hydrocarbon Selectivity in CO <sub>2</sub> Electroreduction over Soft-Landed<br>CuO <sub><i>x</i></sub> Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials<br>& Interfaces, 2022, 14, 2691-2702. | 8.0 | 9         |
| 59 | Bimetallic Zeolite Beta Beads with Hierarchical Porosity as BrÃ,nsted-Lewis Solid Acid Catalysts for<br>the Synthesis of Methyl Lactate. Catalysts, 2021, 11, 1346.                                                                | 3.5 | 8         |
| 60 | Efficient and Selective Oxidation of Aromatic Amines to Azoxy Derivatives over Aluminium and Gallium<br>Oxide Catalysts with Nanorod Morphology. ChemCatChem, 2020, 12, 593-601.                                                   | 3.7 | 7         |
| 61 | Encapsulation of Lactobacillus casei (ATCC 393) by Pickering-Stabilized Antibubbles as a New Method to<br>Protect Bacteria against Low pH. Colloids and Interfaces, 2020, 4, 40.                                                   | 2.1 | 7         |
| 62 | Pickering Emulsions and Antibubbles Stabilized by PLA/PLGA Nanoparticles. Langmuir, 2022, 38, 182-190.                                                                                                                             | 3.5 | 7         |
| 63 | Ti and Zr amino-tris(phenolate) catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Green Chemical Engineering, 2022, 3, 171-179.                                                                              | 6.3 | 7         |
| 64 | Use of Nanoscale Carbon Layers on Ag-Based Gas Diffusion Electrodes to Promote CO Production. ACS Applied Nano Materials, 2022, 5, 7723-7732.                                                                                      | 5.0 | 3         |