List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106746/publications.pdf Version: 2024-02-01

MASANODI IZUMI

#	Article	IF	CITATIONS
1	Development of 1,8-naphthalimide dyes for rapid imaging of subcellular compartments in plants. Chemical Communications, 2022, 58, 1685-1688.	2.2	5
2	Chloroplast proteotoxic stress-induced autophagy is involved in the degradation of chloroplast proteins in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2021, 62, e1-e31.	1.5	1
3	GFS9 Affects Piecemeal Autophagy of Plastids in Young Seedlings of <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 1372-1386.	1.5	3
4	Mitophagy in plants. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129916.	1.1	17
5	Autophagy Contributes to the Quality Control of Leaf Mitochondria. Plant and Cell Physiology, 2021, 62, 229-247.	1.5	37
6	Chlorophagy does not require PLANT U-BOX4-mediated ubiquitination. Plant Signaling and Behavior, 2021, 16, 1861769.	1.2	5
7	RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. Plant Physiology, 2021, 185, 318-330.	2.3	12
8	Development of potent inhibitors for strigolactone receptor DWARF 14. Chemical Communications, 2020, 56, 14917-14919.	2.2	3
9	Editorial: Organelle Autophagy in Plant Development. Frontiers in Plant Science, 2020, 11, 502.	1.7	1
10	Chloroplast Autophagy and Ubiquitination Combine to Manage Oxidative Damage and Starvation Responses. Plant Physiology, 2020, 183, 1531-1544.	2.3	38
11	Autophagy mitigates high-temperature injury in pollen development of Arabidopsis thaliana. Developmental Biology, 2019, 456, 190-200.	0.9	26
12	Roles of the Clock in Controlling Starch Metabolism. Plant Physiology, 2019, 179, 1441-1443.	2.3	7
13	Mitochondrial Dynamics for Pollen Development. Plant Physiology, 2019, 180, 686-687.	2.3	1
14	Autophagic Turnover of Chloroplasts: Its Roles and Regulatory Mechanisms in Response to Sugar Starvation. Frontiers in Plant Science, 2019, 10, 280.	1.7	35
15	How To Identify Autophagy Modulators. Plant Physiology, 2019, 181, 853-854.	2.3	1
16	Heat Shock Proteins Support Refolding and Shredding of Misfolded Proteins. Plant Physiology, 2019, 180, 1777-1778.	2.3	13
17	Chlorophagy is <i>ATG</i> gene-dependent microautophagy process. Plant Signaling and Behavior, 2019, 14, 1554469.	1.2	21
18	An additional role for chloroplast proteins—an amino acid reservoir for energy production during sugar starvation. Plant Signaling and Behavior, 2019, 14, 1552057.	1.2	6

#	Article	lF	CITATIONS
19	Vacuolar Protein Degradation via Autophagy Provides Substrates to Amino Acid Catabolic Pathways as an Adaptive Response to Sugar Starvation in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 1363-1376.	1.5	49
20	The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Science Signaling, 2018, 11, .	1.6	51
21	<i>Atg9a</i> deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy, 2018, 14, 764-777.	4.3	82
22	Discovery of Mitochondrial Endonucleases. Plant Physiology, 2018, 178, 1428-1429.	2.3	0
23	Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (<i>pcd</i>) phenotype. Journal of Neurochemistry, 2018, 147, 557-572.	2.1	20
24	Regulation of Chlorophagy during Photoinhibition and Senescence: Lessons from Mitophagy. Plant and Cell Physiology, 2018, 59, 1135-1143.	1.5	50
25	Selective Elimination of Membrane-Damaged Chloroplasts via Microautophagy. Plant Physiology, 2018, 177, 1007-1026.	2.3	91
26	Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy. International Journal of Molecular Sciences, 2018, 19, 828.	1.8	51
27	Entire Photodamaged Chloroplasts Are Transported to the Central Vacuole by Autophagy. Plant Cell, 2017, 29, 377-394.	3.1	209
28	Vacuolar digestion of entire damaged chloroplasts in <i>Arabidopsis thaliana</i> is accomplished by chlorophagy. Autophagy, 2017, 13, 1239-1240.	4.3	15
29	Partial or entire: Distinct responses of two types of chloroplast autophagy. Plant Signaling and Behavior, 2017, 12, e1393137.	1.2	6
30	L-leucine and SPNS1 coordinately ameliorate dysfunction of autophagy in mouse and human Niemann-Pick type C disease. Scientific Reports, 2017, 7, 15944.	1.6	19
31	Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice. Journal of Biological Chemistry, 2016, 291, 18663-18674.	1.6	65
32	Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. Journal of Biological Chemistry, 2016, 291, 9025-9041.	1.6	69
33	Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5956-5959.	1.0	39
34	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
35	The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates. Nature Communications, 2015, 6, 6116.	5.8	75
36	Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus. Journal of Biological Chemistry, 2015, 290, 20511-20526.	1.6	85

#	Article	IF	CITATIONS
37	Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates. PLoS Genetics, 2015, 11, e1004987.	1.5	250
38	Establishment of Monitoring Methods for Autophagy in Rice Reveals Autophagic Recycling of Chloroplasts and Root Plastids during Energy Limitation. Plant Physiology, 2015, 167, 1307-1320.	2.3	97
39	Autophagy Supports Biomass Production and Nitrogen Use Efficiency at the Vegetative Stage in Rice. Plant Physiology, 2015, 168, 60-73.	2.3	130
40	From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity. Plant Signaling and Behavior, 2015, 10, e1101199.	1.2	10
41	Transport of rice cyclobutane pyrimidine dimer photolyase into mitochondria relies on a targeting sequence located in its Câ€ŧerminal internal region. Plant Journal, 2014, 79, 951-963.	2.8	11
42	Roles of autophagy in chloroplast recycling. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 512-521.	0.5	110
43	LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and Biophysical Research Communications, 2014, 446, 309-315.	1.0	52
44	Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway. Journal of Biological Chemistry, 2014, 289, 24944-24955.	1.6	95
45	Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Letters, 2014, 588, 822-828.	1.3	62
46	Evidence for contribution of autophagy to <scp>R</scp> ubisco degradation during leaf senescence in <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1147-1159.	2.8	79
47	Deficiency of autophagy leads to significant changes of metabolic profiles in <i><i>Arabidopsis</i></i> . Plant Signaling and Behavior, 2013, 8, e25023.	1.2	14
48	Autophagy Contributes to Nighttime Energy Availability for Growth in Arabidopsis Â. Plant Physiology, 2013, 161, 1682-1693.	2.3	124
49	RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany, 2012, 63, 2159-2170.	2.4	98
50	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
51	Autophagy: Renovation of Cells and Tissues. Cell, 2011, 147, 728-741.	13.5	4,844
52	The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. Plant Signaling and Behavior, 2011, 6, 685-687.	1.2	23
53	PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 2010, 189, 211-221.	2.3	1,600
54	The Autophagic Degradation of Chloroplasts via Rubisco-Containing Bodies Is Specifically Linked to Leaf Carbon Status But Not Nitrogen Status in Arabidopsis. Plant Physiology, 2010, 154, 1196-1209.	2.3	143

#	Article	IF	CITATIONS
55	Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves Â Â. Plant Physiology, 2009, 149, 885-893.	2.3	313
56	A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 2009, 33, 505-516.	4.5	974
57	Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL- $1\hat{I}^2$ production. Nature, 2008, 456, 264-268.	13.7	1,837
58	Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury. American Journal of Pathology, 2008, 172, 454-469.	1.9	443
59	Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of Chloroplasts to the Vacuole by an <i>ATG</i> Gene-Dependent Autophagic Process Â. Plant Physiology, 2008, 148, 142-155.	2.3	325
60	Neuronal autophagy: Going the distance to the axon. Autophagy, 2008, 4, 94-96.	4.3	48
61	The Atg8 Conjugation System Is Indispensable for Proper Development of Autophagic Isolation Membranes in Mice. Molecular Biology of the Cell, 2008, 19, 4762-4775.	0.9	424
62	Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14489-14494.	3.3	560
63	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	13.5	1,925
64	Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441, 880-884.	13.7	3,209
65	Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	2.3	2,180