Heather E Fleming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10673935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-cell liver atlas of Plasmodium vivax infection. Cell Host and Microbe, 2022, 30, 1048-1060.e5.	11.0	29
2	A vascularized model of the human liver mimics regenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
3	Identification of NQO2 As a Protein Target in Small Molecule Modulation of Hepatocellular Function. ACS Chemical Biology, 2021, 16, 1770-1778.	3.4	3

Tissue Engineering: Controlled Apoptosis of Stromal Cells to Engineer Human Microlivers (Adv.) Tj ETQq0 0 0 rgBT $\frac{10}{14.9}$ Coverlock 10 Tf 50 62

5	Controlled Apoptosis of Stromal Cells to Engineer Human Microlivers. Advanced Functional Materials, 2020, 30, 1910442.	14.9	9
6	Hepatic tissue engineering. , 2020, , 737-753.		3
7	Improving Drug Discovery by Nucleic Acid Delivery in Engineered Human Microlivers. Cell Metabolism, 2019, 29, 727-735.e3.	16.2	10
8	Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes. Nanoscale, 2019, 11, 21317-21323.	5.6	34
9	InÂVitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. Cell Host and Microbe, 2018, 23, 395-406.e4.	11.0	118
10	Protease activity sensors noninvasively classify bacterial infections and antibiotic responses. EBioMedicine, 2018, 38, 248-256.	6.1	22
11	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	12.4	133
12	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie, 2016, 128, 12628-12632.	2.0	29
13	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie - International Edition, 2016, 55, 12440-12444.	13.8	144
14	Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nature Protocols, 2015, 10, 2027-2053.	12.0	119
15	Wnt Signaling in the Niche Enforces Hematopoietic Stem Cell Quiescence and Is Necessary to Preserve Self-Renewal In Vivo. Cell Stem Cell, 2008, 2, 274-283.	11.1	436
16	Hematopoietic Stem Cell Responsiveness to Exogenous Signals Is Limited by Caspase-3. Cell Stem Cell, 2008, 2, 584-594.	11.1	101
17	Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 2006, 443, 421-426.	27.8	1,011
18	Embryonic stem cells make human T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12213-12214.	7.1	4

HEATHER E FLEMING

#	Article	IF	CITATIONS
19	CD45-Deficient Mice Accumulate Pro-B Cells Both In Vivo and In Vitro. Journal of Immunology, 2004, 173, 2542-2551.	0.8	25
20	Mechanisms of selection mediated by interleukin-7, the preBCR, and hemokinin-1 during B-cell development. Immunological Reviews, 2004, 197, 75-88.	6.0	47
21	Frontline: IL-7 does not prevent pro-B/pre-B cell maturation to the immature/slgM+ stage. European Journal of Immunology, 2004, 34, 2647-2655.	2.9	42
22	Cytokine Signaling and Hematopoietic Homeostasis Are Disrupted in Lnk-deficient Mice. Journal of Experimental Medicine, 2002, 195, 1599-1611.	8.5	201
23	Cooperation between IL-7 and the pre-B cell receptor: a key to B cell selection. Seminars in Immunology, 2002, 14, 423-430.	5.6	52
24	Pre-B Cell Receptor Signaling Mediates Selective Response to IL-7 at the Pro-B to Pre-B Cell Transition via an ERK/MAP Kinase-Dependent Pathway. Immunity, 2001, 15, 521-531.	14.3	156
25	The role of the preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development. Immunological Reviews, 2000, 175, 47-58.	6.0	36
26	The role of the preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development. Immunological Reviews, 2000, 175, 47-58.	6.0	1