
Teresa Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067392/publications.pdf Version: 2024-02-01

TEDESA SOUSA

#	Article	IF	CITATIONS
1	Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Frontiers in Physiology, 2021, 12, 746494.	2.8	56
2	Impaired resolution of inflammation in human chronic heart failure. European Journal of Clinical Investigation, 2014, 44, 527-538.	3.4	43
3	Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. European Journal of Pharmacology, 2008, 588, 267-276.	3.5	42
4	Role of H ₂ O ₂ in hypertension, reninâ€angiotensin system activation and renal medullary disfunction caused by angiotensin II. British Journal of Pharmacology, 2012, 166, 2386-2401.	5.4	37
5	Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. British Journal of Nutrition, 2016, 116, 805-815.	2.3	37
6	Estatinas e stresse oxidativo na insuficiência cardÃaca crónica. Revista Portuguesa De Cardiologia, 2016, 35, 41-57.	0.5	36
7	Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. Journal of Neural Engineering, 2017, 14, 046026.	3.5	29
8	Gender and obesity modify the impact of salt intake on blood pressure in children. Pediatric Nephrology, 2016, 31, 279-288.	1.7	28
9	l-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin II in rats. Nitric Oxide - Biology and Chemistry, 2019, 82, 1-11.	2.7	25
10	Statins and oxidative stress in chronic heart failure. Revista Portuguesa De Cardiologia (English) Tj ETQq0 0 0 rg	BT /Overlc 0.2	ock 10 Tf 50 3
11	Targeting dynamic facial processing mechanisms in superior temporal sulcus using a novel fMRI neurofeedback target. Neuroscience, 2019, 406, 97-108.	2.3	23
12	Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clinica Chimica Acta, 2020, 509, 310-335.	1.1	21
13	Angiotensin converting enzyme inhibition prevents trophic and hypertensive effects of an antagonist of adenosine receptors. European Journal of Pharmacology, 2002, 441, 99-104.	3.5	18
14	The role of angiotensin II in hypertension due to adenosine receptors blockade. European Journal of Pharmacology, 2002, 455, 135-141.	3.5	17
15	Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats. Upsala Journal of Medical Sciences, 2014, 119, 10-18.	0.9	16
16	Association of myeloperoxidase levels with cardiometabolic factors and renal function in prepubertal children. European Journal of Clinical Investigation, 2016, 46, 50-59.	3.4	16
17	Interrelationship between renin-angiotensin-aldosterone system and oxidative stress in chronic heart failure patients with or without renal impairment. Biomedicine and Pharmacotherapy, 2021, 133, 110938.	5.6	15
18	Interaction between the Renin–Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. International Journal of Molecular Sciences, 2021, 22, 4836.	4.1	14

TERESA SOUSA

#	Article	IF	CITATIONS
19	Resolving Inflammation in Heart Failure: Novel Protective Lipid Mediators. Current Drug Targets, 2016, 17, 1206-1223.	2.1	13
20	Inhibition of nociceptive responses of spinal cord neurones during hypertension involves the spinal GABAergic system and a pain modulatory center located at the caudal ventrolateral medulla. Journal of Neuroscience Research, 2006, 83, 647-655.	2.9	12
21	Aspirin and blood pressure: Effects when used alone or in combination with antihypertensive drugs. Revista Portuguesa De Cardiologia, 2017, 36, 551-567.	0.5	12
22	Control of Brain Activity in hMT+/V5 at Three Response Levels Using fMRI-Based Neurofeedback/BCI. PLoS ONE, 2016, 11, e0155961.	2.5	11
23	Scavenging of nitric oxide by an antagonist of adenosine receptorsâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 399-404.	2.4	10
24	Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats. Life Sciences, 2014, 108, 71-79.	4.3	10
25	Purinergic receptors in the splanchnic circulation. Purinergic Signalling, 2008, 4, 267-85.	2.2	9
26	Adenosine A2A and A3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines, 2020, 8, 529.	3.2	9
27	Hypertension Due to Blockade of Adenosine Receptors*. Basic and Clinical Pharmacology and Toxicology, 2003, 92, 160-162.	0.0	8
28	Pre- and postjunctional effects of angiotensin II in hypertension due to adenosine receptor blockade. European Journal of Pharmacology, 2006, 531, 209-216.	3.5	7
29	Lesion of the caudal ventrolateral medulla prevents the induction of hypertension by adenosine receptor blockade in rats. Brain Research, 2006, 1073-1074, 374-382.	2.2	7
30	Evidence for distinct levels of neural adaptation to both coherent and incoherently moving visual surfaces in visual area hMT+. NeuroImage, 2018, 179, 540-547.	4.2	7
31	Losartan and atenolol on hypertension induced by adenosine receptor blockade. Autonomic and Autacoid Pharmacology, 2003, 23, 133-140.	0.5	6
32	Lipid Peroxidation and Antioxidants in Arterial Hypertension. , 2012, , .		6
33	Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children. Free Radical Biology and Medicine, 2021, 163, 116-124.	2.9	6
34	Xanthine Oxidase Inhibition by 1,3-dipropyl-8-sulfophenyl-xanthine (DPSPX), an Antagonist of Adenosine Receptors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 11-15.	5.2	5
35	Regulation of the Renin-Angiotensin-Aldosterone System by Reactive Oxygen Species. , 2017, , .		5
36	Urinary fibrogenic cytokines ET-1 and TGF-β1 are associated with urinary angiotensinogen levels in obese children. Pediatric Nephrology, 2016, 31, 455-464.	1.7	4

TERESA SOUSA

#	Article	IF	CITATIONS
37	Longer duration of obesity is associated with a reduction in urinary angiotensinogen in prepubertal children. Pediatric Nephrology, 2017, 32, 1411-1422.	1.7	3
38	Aspirin and blood pressure: Effects when used alone or in combination with antihypertensive drugs. Revista Portuguesa De Cardiologia (English Edition), 2017, 36, 551-567.	0.2	3
39	Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension and Heart Failure. , 2019, , 509-537.		3
40	Research update for articles published in <scp>EJCI</scp> in 2014. European Journal of Clinical Investigation, 2016, 46, 880-894.	3.4	2
41	Experimental and Clinical Evidence of Endothelial Dysfunction in Inflammatory Bowel Disease. Current Pharmaceutical Design, 2020, 26, 3733-3747.	1.9	2
42	Research update for articles published in <scp>EJCI</scp> in 2016. European Journal of Clinical Investigation, 2018, 48, e13016.	3.4	0