Il-Ryong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10673646/publications.pdf

Version: 2024-02-01

		331670	315739	
39	2,090 citations	21	38	
papers	citations	h-index	g-index	
39	39	39	2597	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Novel alleles of rice <i>elF4G</i> generated by CRISPR/Cas9â€targeted mutagenesis confer resistance to <i>Rice tungro spherical virus</i> Plant Biotechnology Journal, 2018, 16, 1918-1927.	8.3	307
2	Gene Structures, Classification and Expression Models of the AP2/EREBP Transcription Factor Family in Rice. Plant and Cell Physiology, 2011, 52, 344-360.	3.1	295
3	Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice Â. Plant Physiology, 2012, 158, 1833-1846.	4.8	202
4	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
5	Phylogenetic Relationships Within the Family Potyviridae: Wheat Streak Mosaic Virus and Brome Streak Mosaic Virus Are Not Members of the Genus Rymovirus. Phytopathology, 1998, 88, 782-787.	2.2	120
6	Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. Journal of General Virology, 2010, 91, 294-305.	2.9	97
7	A plant virus vector for systemic expression of foreign genes in cereals. Plant Journal, 2000, 23, 547-555.	5.7	84
8	Single Nucleotide Polymorphisms in a Gene for Translation Initiation Factor (eIF4G) of Rice (<i>Oryza) Tj ETQq0 Interactions, 2010, 23, 29-38.</i>	0 0 rgBT /0 2.6	Overlock 10 Tf 82
9	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
10	Relationship between Symptoms and Gene Expression Induced by the Infection of Three Strains of Rice dwarf virus. PLoS ONE, 2011, 6, e18094.	2.5	60
11	Fully Biologically Active In Vitro Transcripts of the Eriophyid Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Phytopathology, 1999, 89, 1182-1185.	2.2	53
12	Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray. PLoS ONE, 2007, 2, e1235.	2.5	51
13	Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 2000, 267, 185-198.	2.4	46
14	An internal RNA element in the P3 cistron of Wheat streak mosaic virus revealed by synonymous mutations that affect both movement and replication. Journal of General Virology, 2005, 86, 2605-2614.	2.9	44
15	An RNA Activator of Subgenomic mRNA1 Transcription in Tomato Bushy Stunt Virus. Journal of Biological Chemistry, 2002, 277, 3760-3766.	3.4	43
16	Regulatory Activity of Distal and Core RNA Elements in Tombusvirus Subgenomic mRNA2 Transcription. Journal of Biological Chemistry, 2001, 276, 41761-41768.	3.4	41
17	Relationship between gene responses and symptoms induced by Rice grassy stunt virus. Frontiers in Microbiology, 2013, 4, 313.	3.5	33

Mapping of the P1 proteinase cleavage site in the polyprotein of Wheat streak mosaic virus (genus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
19	Editorial: Viruses threatening stable production of cereal crops. Frontiers in Microbiology, 2015, 6, 470.	3.5	31
20	Loss-of-Function Alleles of Heading date 1 (Hd1) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region. Frontiers in Plant Science, 2018, 9, 1827.	3.6	29
21	Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with Rice tungro spherical virus. Frontiers in Microbiology, 2014, 5, 26.	3.5	26
22	Characterization of Oryza rufipogon–Derived Resistance to Tungro Disease in Rice. Plant Disease, 2007, 91, 1386-1391.	1.4	21
23	Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Research, 2013, 171, 111-120.	2.2	21
24	Suppression of Two Tungro Viruses in Rice by Separable Traits Originating from Cultivar Utri Merah. Molecular Plant-Microbe Interactions, 2009, 22, 1268-1281.	2.6	20
25	Complete Genome Sequence of the RNAs 3 and 4 Segments of Rice stripe virus Isolates in Korea and their Phylogenetic Relationships with Japan and China Isolates. Plant Pathology Journal, 2009, 25, 142-150.	1.7	19
26	<i>Rice tungro spherical virus</i> resistance into photoperiod-insensitive japonica rice by marker-assisted selection. Breeding Science, 2015, 65, 345-351.	1.9	16
27	Sequence and phylogenetic analysis of the RNA1 and RNA2 segments of Korean Rice stripe virus isolates and comparison with those of China and Japan. Archives of Virology, 2009, 154, 1705-1708.	2.1	13
28	Infection with an asymptomatic virus in rice results in a delayed drought response. Functional Plant Biology, 2020, 47, 239.	2.1	9
29	Yield of irrigated rice affected by asymptomatic disease in a long-term intensive monocropping experiment. Field Crops Research, 2021, 265, 108121.	5.1	9
30	Genetic relationship of tropical regionâ€bred temperate <i>japonica</i> rice (<i>Oryza sativa</i>) plants and their grain yield variations in three different tropical environments. Plant Breeding, 2018, 137, 857-864.	1.9	7
31	Potential yield and nutrient requirements of direct-seeded, dry-season rice in Cambodia. Experimental Agriculture, 2020, 56, 255-264.	0.9	6
32	Importance of phosphorus and potassium in soil-specific nutrient management for wet-season rice in Cambodia. Experimental Agriculture, 2020, 56, 204-217.	0.9	6
33	Reemerging Rice Orange Leaf Phytoplasma with Varying Symptoms Expressions and Its Transmission by a New Leafhopper Vector—Nephotettix virescens Distant. Pathogens, 2020, 9, 990.	2.8	6
34	Fine mapping of Grh1, a major gene associated with antibiosis to green rice leafhopper in rice. Molecular Breeding, 2013, 32, 729-733.	2.1	5
35	Geographic Distribution, Genetic Variability and Biological Properties of Rice Orange Leaf Phytoplasma in Southeast Asia. Pathogens, 2021, 10, 169.	2.8	4
36	Development of Allele Specific SNP Marker for RTSV Resistance Gene at the tsv1 Locus. Plant Breeding and Biotechnology, 2018, 6, 309-312.	0.9	3

#	Article	IF	CITATIONS
37	Identification of Resistance to Rice Tungro Virus Disease in Korean Japonica Rice Cultivars. Han'guk Yukchong Hakhoe Chi, 2019, 51, 86-90.	0.5	1
38	Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 2021, 11, 2253.	3.0	1
39	Innate Vulnerability of <i>Oryza glaberrima</i> to <i>Rice tungro bacilliform virus</i> . Japan Agricultural Research Quarterly, 2019, 53, 1-6.	0.4	O