Qiangwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. Journal of Hazardous Materials, 2022, 424, 127386.	12.4	6
2	Reprogramming of phytopathogen transcriptome by a non-bactericidal pesticide residue alleviates its virulence in rice. Fundamental Research, 2022, 2, 198-207.	3.3	11
3	Lipid Metabolic Disorder Induced by Pyrethroids in Nonalcoholic Fatty Liver Disease of <i>Xenopus laevis</i> . Environmental Science & Technology, 2022, 56, 8463-8474.	10.0	6
4	Gut microbiota dysbiosis involves in host non-alcoholic fatty liver disease upon pyrethroid pesticide exposure. Environmental Science and Ecotechnology, 2022, 11, 100185.	13.5	10
5	The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. Journal of Hazardous Materials, 2021, 407, 124876.	12.4	10
6	A Light-Triggered pH-Responsive Metal–Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS Nano, 2021, 15, 6987-6997.	14.6	126
7	Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. Environmental Science & Technology, 2021, 55, 6926-6935.	10.0	27
8	Keystone taxa-mediated bacteriome response shapes the resilience of the paddy ecosystem to fungicide triadimefon contamination. Journal of Hazardous Materials, 2021, 417, 126061.	12.4	14
9	PXR-mediated organophorous flame retardant tricresyl phosphate effects on lipid homeostasis. Chemosphere, 2021, 284, 131250.	8.2	12
10	Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification. Environmental Science & Technology, 2020, 54, 355-363.	10.0	43
11	Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. Journal of Hazardous Materials, 2020, 381, 120995.	12.4	13
12	Rapid and efficient removal of acetochlor from environmental water using Cr-MIL-101 sorbent modified with 3, 5-Bis(trifluoromethyl)phenyl isocyanate. Science of the Total Environment, 2020, 710, 135512.	8.0	11
13	Microenvironmental Interplay Predominated by Beneficial <i>Aspergillus</i> Abates Fungal Pathogen Incidence in Paddy Environment. Environmental Science & Technology, 2019, 53, 13042-13052.	10.0	24
14	Innovative Approach to Nano Thiazole-Zn with Promising Physicochemical and Bioactive Properties by Nanoreactor Construction. Journal of Agricultural and Food Chemistry, 2019, 67, 11577-11583.	5.2	11
15	Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis. Chemosphere, 2019, 236, 124834.	8.2	18
16	Chronic exposure to environmental levels of cis-bifenthrin: Enantioselectivity and reproductive effects on zebrafish (Danio rerio). Environmental Pollution, 2019, 251, 175-184.	7.5	27
17	Enantioselectivity of toxicological responses induced by maternal exposure of cis-bifenthrin enantiomers in zebrafish (Danio rerio) larvae. Journal of Hazardous Materials, 2019, 371, 655-665.	12.4	31
18	Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae. Aquatic Toxicology, 2018, 199, 212-219.	4.0	33

QIANGWEI WANG

#	Article	IF	CITATIONS
19	Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. Chemosphere, 2018, 201, 840-849.	8.2	36
20	Disrupting effects of azocyclotin to the hypothalamo-pituitary-gonadal axis and reproduction of Xenopus laevis. Aquatic Toxicology, 2017, 185, 121-128.	4.0	12
21	Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor. Toxicological Sciences, 2017, 160, 205-216.	3.1	24
22	Chronic Exposure of Marine Medaka (<i>Oryzias melastigma</i>) to 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Technology, 2016, 50, 4492-4501.	10.0	51
23	Impact of co-exposure with butachlor and triadimefon on thyroid endocrine system in larval zebrafish. Experimental and Toxicologic Pathology, 2016, 68, 463-469.	2.1	25
24	Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles. Aquatic Toxicology, 2016, 177, 190-197.	4.0	26
25	Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae. Chemosphere, 2016, 144, 1646-1654.	8.2	66
26	Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis. Chemosphere, 2016, 152, 158-165.	8.2	23
27	Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Aquatic Toxicology, 2015, 160, 163-171.	4.0	138
28	Bioconcentration and Transfer of the Organophorous Flame Retardant 1,3-Dichloro-2-propyl Phosphate Causes Thyroid Endocrine Disruption and Developmental Neurotoxicity in Zebrafish Larvae. Environmental Science & Technology, 2015, 49, 5123-5132.	10.0	194
29	Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environmental Toxicology and Pharmacology, 2015, 40, 581-586.	4.0	48
30	Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Aquatic Toxicology, 2015, 158, 108-115.	4.0	174
31	Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. Journal of Hazardous Materials, 2015, 283, 897-904.	12.4	131
32	Impact of co-exposure with lead and decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. Aquatic Toxicology, 2014, 157, 186-195.	4.0	40
33	Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology, 2014, 8, 196-207.	3.0	99
34	The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. Aquatic Toxicology, 2014, 150, 66-72.	4.0	47
35	Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate. Aquatic Toxicology, 2014, 150, 175-181.	4.0	48
36	Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic–pituitary–thyroid axis. Aquatic Toxicology, 2013, 126, 207-213.	4.0	244