Wei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10669834/publications.pdf

Version: 2024-02-01

32	923	16	29
papers	citations	h-index	g-index
32	32	32	1117 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo—Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo—Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo†"Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo— Photothermal Therapy. ACS Applied Materials & Delivery System for Chemo†"Photothermal" Photothermal Photothermal Therapy. Accordance for Chemo†"Photothermal" Photothermal Photothe	8.0	138
2	Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale, 2020, 12, 13548-13557.	5.6	104
3	Stellate Plasmonic Exosomes for Penetrative Targeting Tumor NIR-II Thermo-Radiotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36928-36937.	8.0	86
4	Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. Journal of Colloid and Interface Science, 2018, 514, 102-107.	9.4	67
5	Novel Engineered Bacterium/Black Phosphorus Quantum Dot Hybrid System for Hypoxic Tumor Targeting and Efficient Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10564-10573.	8.0	47
6	Deuterohemin-Peptide Enzyme Mimic-Embedded Metal-Organic Frameworks through Biomimetic Mineralization with Efficient ATRP Catalytic Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26948-26957.	8.0	45
7	A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. Journal of Materials Chemistry B, 2020, 8, 5312-5319.	5.8	42
8	Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy. Nanoscale, 2021, 13, 4512-4518.	5.6	41
9	Glucose oxidase and Fe ₃ O ₄ /TiO ₂ /Ag ₃ PO ₄ co-embedded biomimetic mineralization hydrogels as controllable ROS generators for accelerating diabetic wound healing. Journal of Materials Chemistry B, 2021, 9, 6190-6200.	5.8	30
10	Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks. Bioresource Technology, 2018, 247, 1246-1248.	9.6	29
11	Development of a novel oxidative stress-amplifying nanocomposite capable of supplying intratumoral H ₂ O ₂ and O ₂ for enhanced chemodynamic therapy and radiotherapy in patient-derived xenograft (PDX) models. Nanoscale, 2020, 12, 23259-23265.	5.6	29
12	Nanoscale dual-enzyme cascade metal–organic frameworks through biomimetic mineralization as ROS generators for synergistic cancer therapy. Journal of Materials Chemistry B, 2020, 8, 4620-4626.	5.8	29
13	Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. Journal of Materials Chemistry B, 2021, 9, 7597-7607.	5.8	27
14	Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: lipase-catalyzed polymerization. RSC Advances, 2020, 10, 36230-36240.	3.6	23
15	Enzyme mimetic-catalyzed ATRP and its application in block copolymer synthesis combined with enzymatic ring-opening polymerization. RSC Advances, 2015, 5, 42728-42735.	3.6	20
16	Facile Synthesis of Block Copolymers by Tandem ROMP and eROP from Esters Precursors. Biomacromolecules, 2014, 15, 3112-3118.	5.4	16
17	Chemoenzymatic Synthesis of Cholesterol- $\langle i \rangle g \langle i \rangle$ -Poly(amine- $\langle i \rangle co \langle i \rangle$ -ester) Amphiphilic Copolymer as a Carrier for miR-23b Delivery. ACS Macro Letters, 2017, 6, 523-528.	4.8	14
18	Nanoflower-Shaped Biocatalyst with Peroxidase Activity Enhances the Reversible Addition–Fragmentation Chain Transfer Polymerization of Methacrylate Monomers. Macromolecules, 2018, 51, 716-723.	4.8	14

#	Article	IF	CITATIONS
19	Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromolecular Bioscience, 2021, 21, e2100092.	4.1	14
20	Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly($\hat{l}\mu$ -caprolactone) Synthesis. Molecules, 2016, 21, 796.	3.8	11
21	Degradation of phenol using a peroxidase mimetic catalyst through conjugating deuterohemin-peptide onto metal-organic framework with enhanced catalytic activity. Catalysis Communications, 2020, 134, 105859.	3.3	11
22	Oral nanozyme-engineered probiotics for the treatment of ulcerative colitis. Journal of Materials Chemistry B, 2022, 10, 4002-4011.	5.8	11
23	Nano-Platelets as an Oxygen Regulator for Augmenting Starvation Therapy Against Hypoxic Tumor. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571993.	4.1	10
24	Incorporating a silicon unit into a polyether backboneâ€"an effective approach to enhance polyether solubility in CO ₂ . RSC Advances, 2017, 7, 16616-16622.	3.6	9
25	An antioxidant system through conjugating superoxide dismutase onto metal-organic framework for cardiac repair. Bioactive Materials, 2022, 10, 56-67.	15.6	9
26	One-Pot Combination of eROP and ROMP for the Synthesis of Block Copolymers. Macromolecular Chemistry and Physics, 2015, 216, 2107-2114.	2.2	8
27	An amphiphilic non-viral gene vector prepared by a combination of enzymatic atom transfer radical polymerization and enzymatic ring-opening polymerization. RSC Advances, 2017, 7, 9926-9932.	3.6	8
28	Injectable Hydrogel for Cu2+ Controlled Release and Potent Tumor Therapy. Life, 2021, 11, 391.	2.4	8
29	A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks. Journal of Colloid and Interface Science, 2018, 521, 62-68.	9.4	7
30	Treatment of Acute Kidney Injury Using a Dual Enzyme Embedded Zeolitic Imidazolate Frameworks Cascade That Catalyzes In Vivo Reactive Oxygen Species Scavenging. Frontiers in Bioengineering and Biotechnology, 2021, 9, 800428.	4.1	7
31	Chemoenzymatic synthesis of a cholesterol- <i>g</i> -poly(amine- <i>co</i> -ester) carrier for p53 gene delivery to inhibit the proliferation and migration of tumor cells. New Journal of Chemistry, 2018, 42, 13541-13548.	2.8	5
32	Effect of monomer sequence distribution on the CO2-philicity of aÂwell-defined ternary copolymer: Poly(vinyl acetate-co-vinyl butyrate-co-vinyl butyl ether). Polymer, 2017, 130, 102-111.	3.8	4