Yongfang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066961/publications.pdf Version: 2024-02-01

		1163	1250
513	58,561	111	226
papers	citations	h-index	g-index
521	521	521	23008
all docs	docs citations	times ranked	citing authors

YONCEANC LL

#	Article	IF	CITATIONS
1	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	11.7	4,052
2	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	11.1	3,365
3	Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Accounts of Chemical Research, 2012, 45, 723-733.	7.6	2,584
4	Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews, 2012, 41, 4245.	18.7	1,601
5	Indeneâ^'C ₆₀ Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2010, 132, 1377-1382.	6.6	1,151
6	A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society, 2007, 129, 7246-7247.	6.6	1,110
7	Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photonics, 2007, 1, 717-722.	15.6	1,042
8	11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7, 13651.	5.8	917
9	6.5% Efficiency of Polymer Solar Cells Based on poly(3â€hexylthiophene) and Indene ₆₀ Bisadduct by Device Optimization. Advanced Materials, 2010, 22, 4355-4358.	11.1	876
10	Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2016, 138, 15011-15018.	6.6	826
11	Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synthetic Metals, 1999, 99, 243-248.	2.1	809
12	Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. Journal of the American Chemical Society, 2016, 138, 4657-4664.	6.6	743
13	Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy and Environmental Science, 2014, 7, 1966.	15.6	672
14	Allâ€Polymer Solar Cells Based on Absorption omplementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28, 1884-1890.	11.1	670
15	A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9, 743.	5.8	635
16	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	15.6	587
17	Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1701791.	10.2	556
18	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534

#	Article	IF	CITATIONS
19	Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS ₂ Nanocrystals. Chemistry of Materials, 2008, 20, 6434-6443.	3.2	519
20	Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7, 2276-2284.	15.6	493
21	Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 15540-15547.	6.6	490
22	Synthesis and electroluminescence of novel copolymers containing crown ether spacers. Journal of Materials Chemistry, 2003, 13, 800-806.	6.7	485
23	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13503-13507.	7.2	468
24	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	5.8	467
25	Highly Emissive and Colorâ€Tunable CuInS ₂ â€Based Colloidal Semiconductor Nanocrystals: Offâ€Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials, 2012, 22, 2081-2088.	7.8	449
26	High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5, 7943.	15.6	400
27	Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells. Joule, 2019, 3, 191-204.	11.7	398
28	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	6.6	362
29	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
30	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
31	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	6.6	344
32	Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Science China Chemistry, 2018, 61, 531-537.	4.2	342
33	Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Science China Chemistry, 2015, 58, 192-209.	4.2	334
34	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	15.6	324
35	Polymerized Smallâ€Molecule Acceptors for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 4422-4433.	7.2	318
36	Combination of Indene-C ₆₀ Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells. Journal of the American Chemical Society, 2010, 132, 17381-17383.	6.6	307

#	Article	IF	CITATIONS
37	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	6.6	303
38	Improving the Ordering and Photovoltaic Properties by Extending <i>¨€</i> –Conjugated Area of Electronâ€Donating Units in Polymers with Dâ€A Structure. Advanced Materials, 2012, 24, 3383-3389.	11.1	298
39	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	11.1	297
40	Highâ€Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene ₇₀ Bisadduct. Advanced Functional Materials, 2010, 20, 3383-3389.	7.8	294
41	Polymer Doping for Highâ€Efficiency Perovskite Solar Cells with Improved Moisture Stability. Advanced Energy Materials, 2018, 8, 1701757.	10.2	293
42	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	11.7	279
43	Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy and Environmental Science, 2014, 7, 2005.	15.6	275
44	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy and Environmental Science, 2017, 10, 1610-1620.	15.6	272
45	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	11.7	272
46	Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy and Environmental Science, 2015, 8, 1059-1091.	15.6	265
47	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	11.1	253
48	Organic Solar Cell Materials toward Commercialization. Small, 2018, 14, e1801793.	5.2	253
49	Highâ€Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. Advanced Materials, 2016, 28, 8288-8295.	11.1	247
50	A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency. Advanced Materials, 2018, 30, e1800855.	11.1	243
51	High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy and Environmental Science, 2019, 12, 3225-3246.	15.6	236
52	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
53	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	19.8	235
54	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233

#	Article	IF	CITATIONS
55	Highâ€Performance Asâ€Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	11.1	233
56	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	5.8	231
57	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	19.8	230
58	Energy-Down-Shift CsPbCl ₃ :Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1479-1486.	8.8	221
59	Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding―Flexible Transparent Electrode. Advanced Materials, 2020, 32, e1908478.	11.1	216
60	Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nature Communications, 2019, 10, 4593.	5.8	214
61	Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. Journal of Materials Chemistry, 2003, 13, 1069-1075.	6.7	210
62	Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2017, 29, 1703344.	11.1	209
63	A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170.	10.2	203
64	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Alkyl-Substituted Indacenodithiophene Donor Unit. Chemistry of Materials, 2011, 23, 4264-4270.	3.2	193
65	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy and Environmental Science, 2019, 12, 384-395.	15.6	193
66	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
67	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
68	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	3.2	184
69	Interfacial Dipole in Organic and Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 18281-18292.	6.6	182
70	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
71	Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 598-608.	8.8	175
72	Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy and Environmental Science, 2016, 9, 3429-3435.	15.6	170

#	Article	IF	CITATIONS
73	Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12, 5264.	5.8	170
74	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	7.2	166
75	Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. Journal of Materials Chemistry, 2009, 19, 5794.	6.7	165
76	High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2014, 4, 4691.	1.6	165
77	High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain. Energy and Environmental Science, 2016, 9, 885-891.	15.6	165
78	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	7.8	164
79	Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1905480.	11.1	162
80	Highly Efficient All‧mallâ€Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing. Advanced Materials, 2020, 32, e1908373.	11.1	162
81	A Solutionâ€Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 724-728.	10.2	161
82	Thieno[3,2- <i>b</i>]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 31985-31992.	4.0	161
83	Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. Journal of Materials Chemistry, 2008, 18, 4085.	6.7	160
84	PBDTTTZ: A Broad Band Gap Conjugated Polymer with High Photovoltaic Performance in Polymer Solar Cells. Macromolecules, 2011, 44, 4035-4037.	2.2	159
85	Highâ€Performance Colorful Semitransparent Polymer Solar Cells with Ultrathin Hybridâ€Metal Electrodes and Fineâ€Tuned Dielectric Mirrors. Advanced Functional Materials, 2017, 27, 1605908.	7.8	157
86	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
87	A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy and Environmental Science, 2020, 13, 1971-1996.	15.6	156
88	A Quinoxalineâ€Based D–A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells. Advanced Materials, 2021, 33, e2100474.	11.1	155
89	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	11.1	154
90	Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.	10.2	152

#	Article	IF	CITATIONS
91	Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100. Advanced Materials, 2019, 31, e1807159.	11.1	152
92	A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by Coâ€deposition of a Holeâ€Conductor and a Perovskite Layer. Advanced Materials, 2016, 28, 9648-9654.	11.1	150
93	Fullereneâ€Bisadduct Acceptors for Polymer Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2316-2328.	1.7	148
94	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	10.2	144
95	11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Science China Chemistry, 2019, 62, 845-850.	4.2	140
96	Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis. ACS Nano, 2019, 13, 1071-1077.	7.3	134
97	Controlled synthesis of CdS nanorods and hexagonal nanocrystals. Journal of Materials Chemistry, 2003, 13, 2641.	6.7	131
98	Polymer Light-Emitting Electrochemical Cells for High-Efficiency Low-Voltage Electroluminescent Devices. Journal of Display Technology, 2007, 3, 211-224.	1.3	131
99	Exploring High-Performance n-Type Thermoelectric Composites Using Amino-Substituted Rylene Dimides and Carbon Nanotubes. ACS Nano, 2017, 11, 5746-5752.	7.3	129
100	Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy and Environmental Science, 2019, 12, 3400-3411.	15.6	129
101	Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer. Journal of Materials Chemistry A, 2013, 1, 657-664.	5.2	126
102	A Twisted Dimeric Perylene Diimide Electron Acceptor for Efficient Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400420.	10.2	126
103	Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903691.	11.1	125
104	New Strategy for Twoâ€Step Sequential Deposition: Incorporation of Hydrophilic Fullerene in Second Precursor for Highâ€Performance pâ€iâ€n Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703054.	10.2	124
105	Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide- <i>alt</i> -bis(dithienothiophene)]. Applied Physics Letters, 2008, 93, .	1.5	123
106	High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nature Communications, 2021, 12, 178.	5.8	122
107	A Solution Processable Dâ€Aâ€D Molecule based on Thiazolothiazole for High Performance Organic Solar Cells. Advanced Energy Materials, 2012, 2, 63-67.	10.2	121
108	Energy Level and Molecular Structure Engineering of Conjugated Donorâ^'Acceptor Copolymers for Photovoltaic Applications. Macromolecules, 2009, 42, 4491-4499.	2.2	118

#	Article	IF	CITATIONS
109	Sideâ€Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	10.2	118
110	Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. Journal of the American Chemical Society, 2022, 144, 8658-8668.	6.6	116
111	Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.	10.2	114
112	Dyeâ€Incorporated Polynaphthalenediimide Acceptor for Additiveâ€Free Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4580-4584.	7.2	114
113	Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 2014, 10, 259-267.	8.2	111
114	Integrating Ultrathin Bulkâ€Heterojunction Organic Semiconductor Intermediary for Highâ€Performance Lowâ€Bandgap Perovskite Solar Cells with Low Energy Loss. Advanced Functional Materials, 2018, 28, 1804427.	7.8	111
115	Synthesis and Characterization of a Copolymer Based on Thiazolothiazole and Dithienosilole for Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 557-560.	10.2	110
116	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
117	New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. Journal of Materials Chemistry A, 2016, 4, 8724-8733.	5.2	109
118	Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.	7.8	108
119	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	1.6	108
120	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on Fluorine Substituted Wide Bandgap Copolymers Without Extra Treatments. Solar Rrl, 2017, 1, 1700020.	3.1	107
121	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	5.2	107
122	Highly Efficient and Thermally Stable Polymer Solar Cells with Dihydronaphthylâ€Based [70]Fullerene Bisadduct Derivative as the Acceptor. Advanced Functional Materials, 2012, 22, 2187-2193.	7.8	104
123	Effects of Fullerene Bisadduct Regioisomers on Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 158-163.	7.8	104
124	Achieving over 10% efficiency in a new acceptor ITTC and its blends with hexafluoroquinoxaline based polymers. Journal of Materials Chemistry A, 2017, 5, 11286-11293.	5.2	102
125	Effect of Alkylsilyl Sideâ€Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 2018, 8, 1702324.	10.2	102
126	Low bandgap Ï€â€conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structureâ€property relationship study. Journal of Polymer Science Part A, 2009, 47, 5498-5508.	2.5	100

#	Article	IF	CITATIONS
127	Modulating the Molecular Packing and Nanophase Blending via a Random Terpolymerization Strategy toward 11% Efficiency Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1701125.	10.2	98
128	Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602552.	10.2	97
129	A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1802050.	10.2	97
130	Benzodithiophenedione-based polymers: recent advances in organic photovoltaics. NPG Asia Materials, 2020, 12, .	3.8	96
131	Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 3226-3233.	2.1	94
132	Synthesis and Photovoltaic Properties of a Series of Narrow Bandgap Organic Semiconductor Acceptors with Their Absorption Edge Reaching 900 nm. Chemistry of Materials, 2017, 29, 10130-10138.	3.2	93
133	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
134	Multifunctional Polymer Framework Modified SnO ₂ Enabling a Photostable α-FAPbI ₃ Perovskite Solar Cell with Efficiency Exceeding 23%. ACS Energy Letters, 2021, 6, 3824-3830.	8.8	93
135	Synthesis and Photovoltaic Properties of a Donorâ~'Acceptor Double-Cable Polythiophene with High Content of C60Pendant. Macromolecules, 2007, 40, 1868-1873.	2.2	92
136	Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applications. Polymer Chemistry, 2010, 1, 1441.	1.9	92
137	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Advanced Energy Materials, 2017, 7, 1602215.	10.2	92
138	A Synergetic Effect of Molecular Weight and Fluorine in Allâ€Polymer Solar Cells with Enhanced Performance. Advanced Functional Materials, 2017, 27, 1603564.	7.8	92
139	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	4.2	92
140	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€by‣ayer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	10.2	90
141	Efficient Polymer Solar Cells Based on Poly(3â€hexylthiophene):Indeneâ€C ₇₀ Bisadduct with a MoO ₃ Buffer Layer. Advanced Functional Materials, 2012, 22, 585-590.	7.8	88
142	A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 778-784.	5.2	87
143	Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene) and Indene–C ₆₀ Bisadduct Fabricated with Non-halogenated Solvents. ACS Applied Materials & Interfaces, 2014, 6, 8190-8198.	4.0	86
144	Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency. ACS Nano, 2019, 13, 4686-4694.	7.3	86

#	Article	IF	CITATIONS
145	Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules, 2009, 42, 4377-4380.	2.2	85
146	A New Polythiophene Derivative for High Efficiency Polymer Solar Cells with PCE over 9%. Advanced Energy Materials, 2016, 6, 1600430.	10.2	84
147	Enhanced power conversion efficiency in iridium complex-based terpolymers for polymer solar cells. Npj Flexible Electronics, 2018, 2, .	5.1	84
148	Interfacial engineering and optical coupling for multicolored semitransparent inverted organic photovoltaics with a record efficiency of over 12%. Journal of Materials Chemistry A, 2019, 7, 15887-15894.	5.2	83
149	Efficiency Enhancement of Polymer Solar Cells Based on Poly(3â€hexylthiophene)/Indene ₇₀ Bisadduct via Methylthiophene Additive. Advanced Energy Materials, 2011, 1, 1058-1061.	10.2	80
150	Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy and Environmental Science, 2015, 8, 2357-2364.	15.6	80
151	ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer. Solar Energy Materials and Solar Cells, 2013, 113, 85-89.	3.0	79
152	A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells. Chemical Communications, 2016, 52, 6881-6884.	2.2	79
153	Elastic Lattice and Excess Charge Carrier Manipulation in 1D–3D Perovskite Solar Cells for Exceptionally Longâ€Term Operational Stability. Advanced Materials, 2021, 33, e2105170.	11.1	78
154	[6,6]â€Phenylâ€C ₆₁ â€Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for Highâ€Performance Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1569-1574.	10.2	77
155	Interface Design to Improve the Performance and Stability of Solutionâ€Processed Smallâ€Molecule Conventional Solar Cells. Advanced Energy Materials, 2014, 4, 1400816.	10.2	76
156	High Performance Nanostructured Silicon–Organic Quasi <i>p</i> – <i>n</i> Junction Solar Cells <i>via</i> Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano, 2016, 10, 704-712.	7.3	74
157	Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1-13.	2.0	74
158	Fully Solutionâ€Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Advanced Functional Materials, 2016, 26, 4543-4550.	7.8	73
159	The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors. Energy and Environmental Science, 2022, 15, 2011-2020.	15.6	73
160	Medium Bandgap Polymer Donor Based on Bi(trialkylsilylthienylâ€benzo[1,2â€b:4,5â€b′]â€difuran) for High Performance Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1700746.	10.2	72
161	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	15.6	72
162	A furan-bridged D-ï€-A copolymer with deep HOMO level: synthesis and application in polymer solar cells. Polymer Chemistry, 2011, 2, 2872.	1.9	71

#	Article	IF	CITATIONS
163	Solutionâ€Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest. Advanced Energy Materials, 2014, 4, 1300884.	10.2	71
164	A new dialkylthio-substituted naphtho[2,3- <i>c</i>]thiophene-4,9-dione based polymer donor for high-performance polymer solar cells. Energy and Environmental Science, 2019, 12, 675-683.	15.6	71
165	Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. Nano-Micro Letters, 2021, 13, 44.	14.4	71
166	Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. Journal of Polymer Science Part A, 2006, 44, 4916-4922.	2.5	70
167	High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Nano Energy, 2017, 40, 20-26.	8.2	70
168	Novel twoâ€dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2008, 46, 4038-4049.	2.5	69
169	Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9624.	5.2	69
170	Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone. Journal of Materials Chemistry A, 2013, 1, 5747.	5.2	69
171	Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells. Advanced Materials, 2021, 33, e2006753.	11.1	69
172	Large-area flexible organic solar cells. Npj Flexible Electronics, 2021, 5, .	5.1	69
173	A wide-bandgap D–A copolymer donor based on a chlorine substituted acceptor unit for high performance polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 14070-14078.	5.2	68
174	Nonfullerene Polymer Solar Cells based on a Perylene Monoimide Acceptor with a High Open ircuit Voltage of 1.3 V. Advanced Functional Materials, 2017, 27, 1603892.	7.8	67
175	Alternating copolymers of electronâ€rich arylamine and electronâ€deficient 2,1,3â€benzothiadiazole: Synthesis, characterization and photovoltaic properties. Journal of Polymer Science Part A, 2007, 45, 3861-3871.	2.5	66
176	Thieno[3,2- <i>b</i>]thiophene-Bridged Dâ^'π–A Polymer Semiconductor Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene and Benzoxadiazole. Macromolecules, 2013, 46, 4805-4812.	2.2	66
177	Indacenodithienothiophene–naphthalene diimide copolymer as an acceptor for all-polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5810-5816.	5.2	66
178	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
179	Highâ€Polarizability Organic Ferroelectric Materials Doping for Enhancing the Builtâ€In Electric Field of Perovskite Solar Cells Realizing Efficiency over 24%. Advanced Materials, 2022, 34, e2110482.	11.1	65
180	Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO ₂ anode buffer layer. Journal of Materials Chemistry A, 2014, 2, 1318-1324.	5.2	64

#	Article	IF	CITATIONS
181	Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metalâ^'Organic Chemical Vapor Deposition. Crystal Growth and Design, 2007, 7, 488-491.	1.4	63
182	Molecular energy level modulation by changing the position of electron-donating side groups. Journal of Materials Chemistry, 2012, 22, 5700.	6.7	63
183	Morphology optimization of photoactive layers in organic solar cells. Aggregate, 2021, 2, e31.	5.2	63
184	High-performance all-polymer solar cells with only 0.47 eV energy loss. Science China Chemistry, 2020, 63, 1449-1460.	4.2	62
185	Fluorinated Peryleneâ€Diimides: Cathode Interlayers Facilitating Carrier Collection for Highâ€Performance Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	62
186	Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polymer Chemistry, 2011, 2, 2900.	1.9	61
187	A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance. Macromolecules, 2011, 44, 9173-9179.	2.2	61
188	Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer. Applied Physics Letters, 2011, 98, .	1.5	61
189	A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells. Journal of Materials Chemistry, 2012, 22, 17724.	6.7	61
190	Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	5.2	61
191	Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency. Journal of Materials Chemistry A, 2018, 6, 3074-3083.	5.2	61
192	Feasible D1–A–D2–A Random Copolymers for Simultaneous Highâ€Performance Fullerene and Nonfullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1702166.	10.2	61
193	A "σ-Hole―Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells. IScience, 2020, 23, 100965.	1.9	61
194	Selenium-Containing Medium Bandgap Copolymer for Bulk Heterojunction Polymer Solar Cells with High Efficiency of 9.8%. Chemistry of Materials, 2017, 29, 4811-4818.	3.2	60
195	Molecular design with silicon core: toward commercially available hole transport materials for high-performance planar p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 404-413.	5.2	60
196	Breaking 12% efficiency in flexible organic solar cells by using a composite electrode. Science China Chemistry, 2019, 62, 851-858.	4.2	60
197	Transparent Holeâ€Transporting Frameworks: A Unique Strategy to Design Highâ€Performance Semitransparent Organic Photovoltaics. Advanced Materials, 2020, 32, e2003891.	11.1	60
198	Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. Journal of the American Chemical Society, 2021, 143, 4359-4366.	6.6	60

#	Article	IF	CITATIONS
199	Linking Polythiophene Chains Through Conjugated Bridges: A Way to Improve Charge Transport in Polymer Solar Cells. Macromolecular Rapid Communications, 2006, 27, 793-798.	2.0	59
200	Efficiency enhancement in small molecule bulk heterojunction organic solar cells via additive. Applied Physics Letters, 2010, 97, .	1.5	59
201	High Efficiency Planar pâ€iâ€n Perovskite Solar Cells Using Lowâ€Cost Fluoreneâ€Based Hole Transporting Material. Advanced Functional Materials, 2019, 29, 1900484.	7.8	59
202	Room-temperature water-vapor annealing for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17267-17273.	5.2	58
203	Layerâ€byâ€Layer Solutionâ€Processed Lowâ€Bandgap Polymerâ€PC ₆₁ BM Solar Cells with High Efficiency. Advanced Energy Materials, 2014, 4, 1301349.	10.2	57
204	Quantitative o perando visualization of the energy band depth profile in solar cells. Nature Communications, 2015, 6, 7745.	5.8	57
205	Tunable open-circuit voltage in ternary organic solar cells. Applied Physics Letters, 2012, 101, .	1.5	56
206	Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nature Communications, 2019, 10, 398.	5.8	56
207	Effect of the chlorine substitution position of the end-group on intermolecular interactions and photovoltaic performance of small molecule acceptors. Energy and Environmental Science, 2020, 13, 5028-5038.	15.6	56
208	Constructing Monolithic Perovskite/Organic Tandem Solar Cell with Efficiency of 22.0% via Reduced Openâ€Circuit Voltage Loss and Broadened Absorption Spectra. Advanced Materials, 2022, 34, e2108829.	11,1	56
209	Synthesis and photovoltaic properties of two-dimension-conjugated D–A copolymers based on benzodithiophene or benzodifuran units. Polymer Chemistry, 2013, 4, 1474-1481.	1.9	55
210	Efficient polymer solar cells based on a broad bandgap D–A copolymer of "zigzag― naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. Journal of Materials Chemistry A, 2013, 1, 1540-1543.	5.2	55
211	Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–ï€â€"acceptor polymer semiconductors. Polymer Chemistry, 2014, 5, 502-511.	1.9	55
212	All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 15675-15683.	5.2	55
213	Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, e1900437.	2.0	55
214	New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. Journal of Materials Chemistry A, 2013, 1, 570-577.	5.2	54
215	Selfâ€Doping Fullerene Electrolyteâ€Based Electron Transport Layer for Allâ€Roomâ€Temperatureâ€Processed Highâ€Performance Flexible Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1705847. 	7.8	54
216	Triphenylamine-containing D–A–D molecules with (dicyanomethylene)pyran as an acceptor unit for bulk-heterojunction organic solar cells. Journal of Materials Chemistry, 2011, 21, 3768.	6.7	53

#	Article	IF	CITATIONS
217	Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules, 2012, 45, 113-118.	2.2	53
218	New alkoxylphenyl substituted benzo[1,2-b:4,5-b′] dithiophene-based polymers: synthesis and application in solar cells. Journal of Materials Chemistry A, 2013, 1, 10639.	5.2	53
219	A-ï€-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Science China Chemistry, 2022, 65, 1374-1382.	4.2	53
220	Two Polythiophene Derivatives Containing Phenothiazine Units: Synthesis and Photovoltaic Properties. Journal of Physical Chemistry C, 2008, 112, 12058-12064.	1.5	51
221	Incorporation of High-Mobility and Room-Temperature-Deposited Cu _{<i>x</i>} S as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700038.	3.1	51
222	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2017, 129, 13688-13692.	1.6	51
223	Anthraceneâ€Assisted Morphology Optimization in Photoactive Layer for Highâ€Efficiency Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2103944.	7.8	51
224	Incorporation of Fluorine onto Different Positions of Phenyl Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene Unit: Influence on Photovoltaic Properties. Macromolecules, 2015, 48, 4347-4356.	2.2	50
225	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	3.2	50
226	Effects of Shortâ€Axis Alkoxy Substituents on Molecular Selfâ€Assembly and Photovoltaic Performance of Indacenodithiopheneâ€Based Acceptors. Advanced Functional Materials, 2020, 30, 1906855.	7.8	50
227	One‣ource Strategy Boosting Dopantâ€Free Hole Transporting Layers for Highly Efficient and Stable CsPbl ₂ Br Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010696.	7.8	50
228	Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. New Journal of Chemistry, 2003, 27, 333-336.	1.4	49
229	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	5.2	49
230	Development of Spiro[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> â€2]dithiophene-4,9â€2-fluorene]-Based A-Ï€-D-Ï€-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 4614-4625.	4.0	49
231	Highly Efficient Flexible Polymer Solar Cells with Robust Mechanical Stability. Advanced Science, 2019, 6, 1801180.	5.6	49
232	Organic Nâ€Type Molecule: Managing the Electronic States of Bulk Perovskite for Highâ€Performance Photovoltaics. Advanced Functional Materials, 2020, 30, 2001788.	7.8	49
233	Introducing Low ost Pyrazine Unit into Terpolymer Enables Highâ€Performance Polymer Solar Cells with Efficiency of 18.23%. Advanced Functional Materials, 2022, 32, 2109271.	7.8	49
234	Synthesis and optoelectronic properties of new D–A copolymers based on fluorinated benzothiadiazole and benzoselenadiazole. Polymer Chemistry, 2014, 5, 567-577.	1.9	48

#	Article	IF	CITATIONS
235	Hexafluoroquinoxaline Based Polymer for Nonfullerene Solar Cells Reaching 9.4% Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 18816-18825.	4.0	47
236	A Medium Bandgap D–A Copolymer Based on 4-Alkyl-3,5-difluorophenyl Substituted Quinoxaline Unit for High Performance Solar Cells. Macromolecules, 2018, 51, 2838-2846.	2.2	47
237	Dibenzo[<i>b</i> , <i>d</i>]thiopheneâ€Cored Holeâ€Transport Material with Passivation Effect Enabling the Highâ€Efficiency Planar p–i–n Perovskite Solar Cells with 83% Fill Factor. Solar Rrl, 2020, 4, 1900421.	3.1	47
238	Flexible and Air‧table Nearâ€Infrared Sensors Based on Solutionâ€Processed Inorganic–Organic Hybrid Phototransistors. Advanced Functional Materials, 2021, 31, 2105887.	7.8	47
239	Surface Reconstruction for Stable Monolithic Allâ€Inorganic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	47
240	Synthesis and properties of polythiophenes with conjugated side-chains containing carbon–carbon double and triple bonds. Journal of Polymer Science Part A, 2006, 44, 2206-2214.	2.5	46
241	Improvement of the power conversion efficiency and long term stability of polymer solar cells by incorporation of amphiphilic Nafion doped PEDOT-PSS as a hole extraction layer. Journal of Materials Chemistry A, 2015, 3, 18727-18734.	5.2	46
242	Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. Journal of Applied Polymer Science, 2003, 87, 1537-1540.	1.3	45
243	18.55% Efficiency Polymer Solar Cells Based on a Small Molecule Acceptor with Alkylthienyl Outer Side Chains and a Low-Cost Polymer Donor PTQ10. CCS Chemistry, 2023, 5, 841-850.	4.6	45
244	Isomeric Effects of Solution Processed Ladderâ€Type Nonâ€Fullerene Electron Acceptors. Solar Rrl, 2017, 1, 1700107.	3.1	44
245	Synthesis and Absorption Spectra of nâ€īype Conjugated Polymers Based on Perylene Diimide. Macromolecular Rapid Communications, 2008, 29, 1444-1448.	2.0	43
246	Soluble dithienothiophene polymers: Effect of link pattern. Journal of Polymer Science Part A, 2009, 47, 2843-2852.	2.5	43
247	New X-shaped oligothiophenes for solution-processed solar cells. Journal of Materials Chemistry, 2011, 21, 9667.	6.7	43
248	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polymer Chemistry, 2016, 7, 926-932.	1.9	43
249	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie - International Edition, 2018, 57, 13629-13634.	7.2	43
250	D–A Copolymer Donor Based on Bithienyl Benzodithiophene D-Unit and Monoalkoxy Bifluoroquinoxaline A-Unit for High-Performance Polymer Solar Cells. Chemistry of Materials, 2020, 32, 3254-3261.	3.2	43
251	High-performance all-small-molecule organic solar cells without interlayers. Energy and Environmental Science, 2021, 14, 3174-3183.	15.6	43
252	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	7.2	43

#	Article	IF	CITATIONS
253	Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics. Energy and Environmental Science, 2021, 14, 4555-4563.	15.6	43
254	Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C ₈ H ₁₇) ₄ N] ₄ [SiW ₁₂ O ₄₀]. Journal of Materials Chemistry A, 2016, 4, 19189-19196.	5.2	42
255	Cross Self-n-Doping and Electron Transfer Model in a Stable and Highly Conductive Fullerene Ammonium Iodide: A Promising Cathode Interlayer in Organic Solar Cells. Chemistry of Materials, 2016, 28, 1227-1235.	3.2	42
256	Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 34146-34152.	4.0	42
257	Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Science China Chemistry, 2020, 63, 987-996.	4.2	42
258	Light-emitting copolymers based on fluorene and selenophene?Comparative studies with its sulfur analogue: Poly(fluorene-co-thiophene). Journal of Polymer Science Part A, 2005, 43, 823-836.	2.5	41
259	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	5.2	41
260	The role of conjugated side chains in high performance photovoltaic polymers. Journal of Materials Chemistry A, 2015, 3, 2802-2814.	5.2	41
261	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	5.2	41
262	Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. Journal of Polymer Science Part A, 2006, 44, 1279-1290.	2.5	40
263	All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Applied Physics Letters, 2009, 94, 193302.	1.5	40
264	Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor. Journal of Materials Chemistry C, 2020, 8, 7718-7724.	2.7	40
265	Nonâ€Halogenatedâ€Solvent Processed and Additiveâ€Free Tandem Organic Solar Cell with Efficiency Reaching 16.67%. Advanced Functional Materials, 2021, 31, 2102361.	7.8	40
266	PEDOT:PSSâ€Free Polymer Nonâ€Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binaryâ€Solventâ€Chlorinated ITO Anode. Advanced Functional Materials, 2021, 31, 2106846.	7.8	40
267	Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Applied Physics Letters, 2013, 102, .	1.5	39
268	n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 13807-13816.	5.2	39
269	Synthesis and Cathodoluminescence of Morphology-Tunable SiO ₂ Nanotubes and ZnS/SiO ₂ Coreâ^'Shell Structures Using CdSe Nanocrystals as the Seeds. Journal of Physical Chemistry C, 2007, 111, 11604-11611.	1.5	38
270	A star-shaped electron acceptor based on 5,5′-bibenzothiadiazole for solution processed solar cells. Journal of Materials Chemistry A, 2013, 1, 14627.	5.2	38

#	Article	IF	CITATIONS
271	Single crystalline indene-C ₆₀ bisadduct: isolation and application in polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 14991-14995.	5.2	38
272	Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Science China Chemistry, 2020, 63, 1256-1261.	4.2	38
273	Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Science China Chemistry, 2020, 63, 957-965.	4.2	38
274	Peryleneâ€diimideâ€based cathode interlayer materials for high performance organic solar cells. SusMat, 2022, 2, 243-263.	7.8	38
275	Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable. Nature Communications, 2022, 13, .	5.8	38
276	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	1.9	37
277	Catechol derivatives as dopants in PEDOT:PSS to improve the performance of p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24275-24281.	5.2	37
278	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	5.2	37
279	Understanding the Effect of the Third Component PC ₇₁ BM on Nanoscale Morphology and Photovoltaic Properties of Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900540.	3.1	37
280	Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-bâ€2]dithiophene-Based Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 25237-25246.	4.0	36
281	Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors. Advanced Energy Materials, 2018, 8, 1800815.	10.2	36
282	Fluid Mechanics Inspired Sequential Bladeâ€Coating for Highâ€Performance Largeâ€Area Organic Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	36
283	Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in fieldâ€effect transistors and polymer solar cells. Journal of Polymer Science Part A, 2012, 50, 371-377.	2.5	35
284	Synthesis and photovoltaic properties of a D–A copolymer of dithienosilole and fluorinated-benzotriazole. Polymer Chemistry, 2013, 4, 1467-1473.	1.9	35
285	A benzo[1,2-b:4,5-bâ€2]difuran- and thieno-[3,4-b]thiophene-based low bandgap copolymer for photovoltaic applications. Polymer Chemistry, 2013, 4, 470-476.	1.9	35
286	Crystalline Medium-Bandgap Light-Harvesting Donor Material Based on <i>β-</i> Naphthalene Asymmetric-Modified Benzodithiophene Moiety toward Efficient Polymer Solar Cells. Chemistry of Materials, 2017, 29, 8249-8257.	3.2	35
287	Quinoxalineâ€Based D–A Copolymers for the Applications as Polymer Donor and Hole Transport Material in Polymer/Perovskite Solar Cells. Advanced Materials, 2022, 34, e2104161.	11.1	35
288	Spatial Distribution Recast for Organic Bulk Heterojunctions for Highâ€Performance Allâ€Inorganic Perovskite/Organic Integrated Solar Cells. Advanced Energy Materials, 2020, 10, 2000851.	10.2	34

#	Article	IF	CITATIONS
289	Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells. Rare Metals, 2021, 40, 2730-2746.	3.6	34
290	15.71% Efficiency All‧mallâ€Molecule Organic Solar Cells Based on Lowâ€Cost Synthesized Donor Molecules. Advanced Functional Materials, 2022, 32, .	7.8	34
291	Synthesis, hole mobility, and photovoltaic properties of two alternating poly[3-(hex-1-enyl)thiophene-co-thiophene]s. Journal of Polymer Science Part A, 2007, 45, 629-638.	2.5	33
292	Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: Effect of pendant acceptors. Journal of Polymer Science Part A, 2011, 49, 1462-1470.	2.5	33
293	Porphyrin-containing D–Ĩ€â€"A conjugated polymer with absorption over the entire spectrum of visible light and its applications in solar cells. Journal of Materials Chemistry, 2012, 22, 11006.	6.7	33
294	Trapping Light with a Nanostructured CeO _x /Al Back Electrode for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400197.	1.9	33
295	Precise Control of Phase Separation Enables 12% Efficiency in All Small Molecule Solar Cells. Advanced Energy Materials, 2020, 10, 2001589.	10.2	33
296	Dumb-belled PCBM derivative with better photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 1758-1761.	6.7	32
297	Achieving over 9.8% Efficiency in Nonfullerene Polymer Solar Cells by Environmentally Friendly Solvent Processing. ACS Applied Materials & Interfaces, 2017, 9, 37078-37086.	4.0	32
298	Poly(4,8â€bis(2â€ethylhexyloxy)benzo[1,2â€b:4,5â€b′]dithiophene vinylene): Synthesis, optical and photovo properties. Journal of Polymer Science Part A, 2010, 48, 1822-1829.	ltaic 2.5	31
299	Liquid Crystal Helps ZnO Nanoparticles Self-Assemble for Performance Improvement of Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 6332-6339.	1.5	31
300	Ultralong CdTe Nanowires: Catalystâ€Free Synthesis and High‥ield Transformation into Core–Shell Heterostructures. Advanced Functional Materials, 2012, 22, 2402-2411.	7.8	31
301	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	5.2	31
302	Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Solar Energy, 2020, 204, 660-666.	2.9	31
303	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	4.0	30
304	Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nature Communications, 2020, 11, 2530.	5.8	30
305	Effect of electrolyte concentration on the properties of the electropolymerized polypyrrole films. Journal of Applied Polymer Science, 1997, 65, 2739-2744.	1.3	29
306	Synthesis and photovoltaic properties of D–A copolymers of benzodithiophene and naphtho[2,3-c]thiophene-4,9-dione. Polymer Chemistry, 2012, 3, 99-104.	1.9	29

#	Article	IF	CITATIONS
307	Efficient as-cast semi-transparent organic solar cells with efficiency over 9% and a high average visible transmittance of 27.6%. Physical Chemistry Chemical Physics, 2019, 21, 10660-10666.	1.3	29
308	Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4716-4724.	2.7	29
309	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	5.8	29
310	Effects of donor unit and Ï€â€bridge on photovoltaic properties of D–A copolymers based on benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ']â€dithiopheneâ€4,8â€dione acceptor unit. Journal of Polymer Science Part A 2014, 52, 1929-1940.	, 2.5	28
311	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	4.2	28
312	Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. Journal of Physical Chemistry C, 2009, 113, 5879-5885.	1.5	27
313	High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole. Polymer Chemistry, 2014, 5, 5002-5008.	1.9	27
314	End-Capping Effect of Quinoxalino[2,3-b′]porphyrin on Donor–Acceptor Copolymer and Improved Performance of Polymer Solar Cells. Macromolecules, 2016, 49, 3723-3732.	2.2	27
315	Effect of furan π-bridge on the photovoltaic performance of D-A copolymers based on bi(alkylthio-thienyl)benzodithiophene and fluorobenzotriazole. Science China Chemistry, 2017, 60, 537-544.	4.2	27
316	Realizing Enhanced Efficiency in Nonhalogen Solvent Processed Ternary Polymer Solar Cells by Incorporating Compatible Polymer Donor. Solar Rrl, 2018, 2, 1800060.	3.1	27
317	Fine-Tuning Miscibility and π–π Stacking by Alkylthio Side Chains of Donor Molecules Enables High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36033-36043.	4.0	27
318	Electroluminescent properties of a partially-conjugated hyperbranched poly(p-phenylene vinylene). Polymers for Advanced Technologies, 2006, 17, 145-149.	1.6	26
319	Poly(thienyleneâ€vinyleneâ€thienylene) with cyano substituent: Synthesis and application in fieldâ€effect transistor and polymer solar cell. Journal of Polymer Science Part A, 2009, 47, 4028-4036.	2.5	26
320	Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 3696.	6.7	26
321	Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22695-22707.	5.2	26
322	Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content. ACS Applied Materials & amp; Interfaces, 2015, 7, 24686-24693.	4.0	26
323	Alkoxy substituted benzodithiophene-alt-fluorobenzotriazole copolymer as donor in non-fullerene polymer solar cells. Science China Chemistry, 2016, 59, 1317-1322.	4.2	26
324	Effect of Replacing Thiophene by Selenophene on the Photovoltaic Performance of Wide Bandgap Copolymer Donors. Macromolecules, 2019, 52, 4776-4784.	2.2	26

#	Article	IF	CITATIONS
325	Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells. Science China Chemistry, 2019, 62, 790-796.	4.2	26
326	Electroluminescence and photovoltaic properties of poly(<i>p</i> â€phenylene vinylene) derivatives with dendritic pendants. Journal of Applied Polymer Science, 2008, 107, 514-521.	1.3	25
327	Thiazolothiazole ontaining polythiophenes with low HOMO level and high hole mobility for polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4875-4885.	2.5	25
328	Side-chain engineering of benzodithiophene–thiophene copolymers with conjugated side chains containing the electron-withdrawing ethylrhodanine group. Journal of Materials Chemistry A, 2015, 3, 12005-12015.	5.2	25
329	Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 802-806.	3.2	25
330	High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption. Journal of Materials Chemistry A, 2018, 6, 9613-9622.	5.2	25
331	A Novel Strategy for Scalable Highâ€Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. Advanced Materials, 2018, 30, e1804454.	11.1	25
332	Effects of fused-ring regiochemistry on the properties and photovoltaic performance of n-type organic semiconductor acceptors. Journal of Materials Chemistry A, 2018, 6, 15933-15941.	5.2	25
333	Impact of Isomer Design on Physicochemical Properties and Performance in High-Efficiency All-Polymer Solar Cells. Macromolecules, 2020, 53, 9026-9033.	2.2	25
334	Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property. ACS Applied Materials & Interfaces, 2021, 13, 7705-7713.	4.0	25
335	Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells. Science China Chemistry, 2021, 64, 1031-1038.	4.2	25
336	Electroluminescent and Photovoltaic Properties of the Crosslinkable Poly(phenylene vinylene) Derivative with Side Chains Containing Vinyl Groups. Macromolecular Chemistry and Physics, 2005, 206, 1311-1318.	1.1	24
337	Synthesis and charge-transporting properties of electron-deficient CN2–fluorene based D–A copolymers. Polymer Chemistry, 2012, 3, 2170.	1.9	24
338	Highâ€Efficiency Polymer Solar Cells Based on Poly(3â€pentylthiophene) with Indeneâ€C ₇₀ Bisadduct as an Acceptor. Advanced Energy Materials, 2012, 2, 966-969.	10.2	24
339	Utilizing an electron-deficient thieno[3,4- <i>c</i>]pyrrole-4,6-dione (TPD) unit as a π-bridge to improve the photovoltaic performance of Aâ€″Ĩ€â€"Dâ€″Ĩ€â€"A type acceptors. Journal of Materials Chemistry C, 2020, 8, 15981-15984.	2.7	24
340	An intermeshing electron transporting layer for efficient and stable CsPbI ₂ Br perovskite solar cells with open circuit voltage over 1.3 V. Journal of Materials Chemistry A, 2020, 8, 14555-14565.	5.2	24
341	Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2868-2875.	1.4	23
342	Compatibility between Solubility and Enhanced Crystallinity of Benzotriazole-Based Small Molecular Acceptors with Less Bulky Alkyl Chains for Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36053-36061.	4.0	23

#	Article	IF	CITATIONS
343	"Reinforced concrete―like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness. Science China Chemistry, 2022, 65, 1164-1172.	4.2	23
344	Ambient stable large-area flexible organic solar cells using silver grid hybrid with vapor phase polymerized poly(3,4-Ethylenedioxythiophene) cathode. Solar Energy Materials and Solar Cells, 2015, 143, 354-359.	3.0	22
345	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	1.7	22
346	A new polymer donor for efficient polymer solar cells: simultaneously realizing high short-circuit current density and transparency. Journal of Materials Chemistry A, 2018, 6, 14700-14708.	5.2	22
347	Solutionâ€Processed Tin Oxideâ€PEDOT:PSS Interconnecting Layers for Efficient Inverted and Conventional Tandem Polymer Solar Cells. Solar Rrl, 2019, 3, 1800366.	3.1	22
348	Synergistic Effects of Sideâ€Chain Engineering and Fluorination on Small Molecule Acceptors to Simultaneously Broaden Spectral Response and Minimize Voltage Loss for 13.8% Efficiency Organic Solar Cells. Solar Rrl, 2019, 3, 1900169.	3.1	22
349	Polymerized Smallâ€Molecule Acceptors for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2021, 133, 4470-4481.	1.6	22
350	Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. Journal of Energy Chemistry, 2022, 65, 173-178.	7.1	22
351	Template-free solution growth of highly regular, crystal orientation-ordered C ₆₀ nanorod bundles. Journal of Materials Chemistry, 2010, 20, 953-956.	6.7	21
352	Copolymers from naphtho[2,3-c]thiophene-4,9-dione derivatives and benzodithiophene: synthesis and photovoltaic applications. RSC Advances, 2012, 2, 7439.	1.7	21
353	Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance. Nanoscale, 2015, 7, 11024-11032.	2.8	21
354	Design of a thiophene-fused benzotriazole unit as an electron acceptor to build D–A copolymers for polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 2951-2957.	2.7	21
355	Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. Polymer Chemistry, 2017, 8, 4729-4737.	1.9	21
356	Fluorinated heptacyclic carbazole-based ladder-type acceptors with aliphatic side chains for efficient fullerene-free organic solar cells. Materials Chemistry Frontiers, 2019, 3, 829-835.	3.2	21
357	Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angewandte Chemie, 2021, 133, 2352-2359.	1.6	21
358	Hyperbranched conjugated polymers for photovoltaic applications. Journal of Applied Polymer Science, 2004, 92, 1459-1466.	1.3	20
359	Synthesis and photovoltaic properties of copolymers based on bithiophene and bithiazole. Journal of Polymer Science Part A, 2011, 49, 2746-2754.	2.5	20
360	Fluorine substituted benzothiazole-based low bandgap polymers for photovoltaic applications. RSC Advances, 2013, 3, 11869.	1.7	20

#	Article	IF	CITATIONS
361	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	3.1	20
362	A Nonâ€Fullerene Acceptor with Chlorinated Thienyl Conjugated Side Chains for Highâ€Performance Polymer Solar Cells via Toluene Processing. Chinese Journal of Chemistry, 2020, 38, 697-702.	2.6	20
363	Metalâ€microstructure based flexible transparent electrodes and their applications in electronic devices. Nano Select, 2020, 1, 169-182.	1.9	20
364	Conjugated Mesopolymer Achieving 15% Efficiency Singleâ€Junction Organic Solar Cells. Advanced Science, 2022, 9, e2105430.	5.6	20
365	Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions. Mikrochimica Acta, 2007, 158, 327-334.	2.5	19
366	A conjugated polymer based on 5,5′-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells. Journal of Materials Chemistry, 2012, 22, 3432.	6.7	19
367	Synthesis and characterization of arylenevinylenearylene–naphthalene diimide copolymers as acceptor in all–polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 1757-1764.	2.5	19
368	A facile approach towards chemical modification of Ag nanowires by PEDOT as a transparent electrode for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 312-319.	2.7	19
369	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	1.8	19
370	Realizing high photovoltage for inverted planar heterojunction perovskite solar cells. Science China Chemistry, 2019, 62, 1-2.	4.2	19
371	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DA′D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	8.8	19
372	Naphthalenediimideâ€ <i>alt</i> â€Fused Thiophene D–A Copolymers for the Application as Acceptor in Allâ€Polymer Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2785-2791.	1.7	18
373	Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 26351-26357.	5.2	18
374	High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. Journal of Power Sources, 2020, 449, 227488.	4.0	18
375	In-situ stabilization strategy for CsPbX3-Silicone resin composite with enhanced luminescence and stability. Nano Energy, 2020, 78, 105150.	8.2	18
376	Highâ€Performance Allâ€Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angewandte Chemie, 2020, 132, 15293-15297.	1.6	18
377	A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polymer Chemistry, 2011, 2, 2102.	1.9	17
378	Red-emission organic light-emitting diodes based on solution-processable molecules with triphenylamine core and benzothiadiazole-thiophene arms. Science China Chemistry, 2011, 54, 695-698.	4.2	17

#	Article	IF	CITATIONS
379	Over 10% efficiencies achieved for the PSCs with thick active layer based on D-A copolymer donors and various fullerene acceptors. Science China Chemistry, 2015, 58, 188-188.	4.2	17
380	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	3.1	17
381	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. ACS Applied Materials & Interfaces, 2020, 12, 9537-9544.	4.0	17
382	Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. Journal of Materials Chemistry A, 2021, 9, 14752-14757.	5.2	17
383	Introducing Electron-Withdrawing Linking Units and Thiophene π-Bridges into Polymerized Small Molecule Acceptors for High-Efficiency All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 8212-8222.	3.2	17
384	Synthesis and characterization of photo-crosslinkable polyfluorene with acrylate side-chains. Journal of Applied Polymer Science, 2006, 100, 2336-2342.	1.3	16
385	A fullerene dyad with a tri(octyloxy)benzene moiety induced efficient nanoscale active layer for the poly(3-hexylthiophene)-based bulk heterojunction solar cell applications. Chemical Communications, 2013, 49, 4917.	2.2	16
386	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. Science China Chemistry, 2018, 61, 1405-1412.	4.2	16
387	Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 32218-32224.	4.0	16
388	Alkyl substituted naphtho[1, 2-b: 5, 6-b′]difuran as a new building block towards efficient polymer solar cells. RSC Advances, 2013, 3, 5366.	1.7	15
389	Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules. Science China Chemistry, 2014, 57, 966-972.	4.2	15
390	Polymer Solar Cells: Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1132-1132.	11.1	15
391	A new polymer acceptor containing naphthalene diimide and 1,3,4â€ŧhiadiazole for allâ€polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 990-996.	2.4	15
392	High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells. Chinese Chemical Letters, 2021, 32, 1257-1262.	4.8	15
393	Behavior of the High Temperature Conductivity of Polypyrrole Nitrate Films. Polymer Journal, 1994, 26, 535-538.	1.3	14
394	Luminescent Block Copolymer Containing PEO-Like Segments for Polymer Light-Emitting Devices. Molecular Crystals and Liquid Crystals, 1999, 337, 473-476.	0.3	14
395	High performance polymer fieldâ€effect transistors based on polythiophene derivative with conjugated side chain. Journal of Polymer Science Part A, 2009, 47, 5304-5312.	2.5	14
396	Synthesis and photovoltaic properties of twoâ€dimensional Dâ€A copolymers with conjugated side chains. Journal of Polymer Science Part A, 2011, 49, 3852-3862.	2.5	14

#	Article	IF	CITATIONS
397	Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Science China Chemistry, 2013, 56, 997-1003.	4.2	14
398	Effect of fluorine substitution on the photovoltaic performance of poly(thiophene-quinoxaline) copolymers. Polymer Chemistry, 2015, 6, 8203-8213.	1.9	14
399	Cyclometalated Pt complex based random terpolymers as electron acceptors for all polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 105-115.	2.5	14
400	Self-doped polymer with fluorinated phenylene as hole transport layer for efficient polymer solar cells. Organic Electronics, 2018, 61, 207-214.	1.4	14
401	Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics, 2007, 208, 1294-1300.	1.1	13
402	Synthesis, Electrochemical and Photovoltaic Properties of Multiâ€Armed Polythiophenes with Triphenylamine Trivinylene as Conjugated Linker. Macromolecular Chemistry and Physics, 2008, 209, 1454-1462.	1.1	13
403	Synthesis and Photovoltaic Properties of D–A Copolymers Based on 11,12â€Difluorodibenzo[a,c]phenazine Acceptor Unit. Macromolecular Chemistry and Physics, 2013, 214, 1772-1779.	1.1	13
404	Selfâ€Doped and Crownâ€Ether Functionalized Fullerene as Cathode Buffer Layer for Highlyâ€Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2016, 6, .	10.2	13
405	High photovoltaic performance of as-cast devices based on new quinoxaline-based donor–acceptor copolymers. Polymer Chemistry, 2017, 8, 5688-5697.	1.9	13
406	Side-chain fluorination on the pyrido[3,4-b]pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	4.2	13
407	3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells. Science China Materials, 2021, 64, 277-287.	3.5	13
408	Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS Applied Materials & Interfaces, 2021, 13, 50163-50175.	4.0	13
409	Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 54237-54245.	4.0	13
410	Effect of Branched Side Chains on the Physicochemical and Photovoltaic Properties of Poly(3â€hexylthiophene) Isomers. Macromolecular Chemistry and Physics, 2012, 213, 2267-2274.	1.1	12
411	Effect of Device Fabrication Conditions on Photovoltaic Performance of Polymer Solar Cells Based on Poly(3â€hexylthiophene) and Indene ₇₀ Bisadduct. Chinese Journal of Chemistry, 2012, 30, 19-22.	2.6	12
412	Synthesis and characterization of porphyrinâ€based Dâ€i€â€A conjugated polymers for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 2243-2251.	2.5	12
413	Enhanced efficiency of perovskite solar cells through improving active layer morphology by interfacial engineering. Science China Chemistry, 2015, 58, 830-830.	4.2	12
414	Two new fluorinated copolymers based on thieno[2,3-f]benzofuran for efficient polymer solar cells. RSC Advances, 2016, 6, 62923-62933.	1.7	12

#	Article	IF	CITATIONS
415	Management of the light distribution within the photoactive layer for high performance conventional and inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 1915-1922.	5.2	12
416	Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 137-144.	3.2	12
417	Twoâ€Dimension Conjugated Acceptors Based on Benzodi(cyclopentadithiophene) Core with Thiopheneâ€Fused Ending Group for Efficient Polymer Solar Cells. Solar Rrl, 2020, 4, 2000071.	3.1	12
418	Influence of altering chlorine substitution positions on the photovoltaic properties of small molecule donors in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2017-2025.	2.7	12
419	Polymer light-emitting electrochemical cell based on a block copolymer containing tri(ethyleneoxide) spacers. Polymers for Advanced Technologies, 2002, 13, 663-669.	1.6	11
420	Thinner-film plastic photovoltaic cells based on different C60 derivatives. Polymers for Advanced Technologies, 2006, 17, 500-505.	1.6	11
421	Synthesis and photovoltaic properties of polythiophene derivatives with side chains containing C ₆₀ end group. Journal of Applied Polymer Science, 2010, 115, 532-539.	1.3	11
422	Synthesis and Photovoltaic Properties of a D–A Copolymer Based on the 2,3â€Di(5â€hexylthioÂphenâ€2â€yl)quinoxaline Acceptor Unit. Macromolecular Chemistry and Physics, 2014, 2 597-603.	15,1.1	11
423	Effect of solvent additives and P3HT on PDTSTTz/PCBM-based bulk heterojunction solar cells. Journal of Photonics for Energy, 2015, 5, 057209.	0.8	11
424	Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar solar cells. Solar Energy Materials and Solar Cells, 2016, 149, 162-169.	3.0	11
425	Hydrophilic Fullerene Derivative Doping in Active Layer and Electron Transport Layer for Enhancing Oxygen Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900249.	3.1	11
426	Annealing- and doping-free hole transport material for p-i-n perovskite solar cells with efficiency achieving over 21%. Chemical Engineering Journal, 2022, 433, 133265.	6.6	11
427	2′- and 3′-Ribose Modifications of Nucleotide Analogues Establish the Structural Basis to Inhibit the Viral Replication of SARS-CoV-2. Journal of Physical Chemistry Letters, 2022, 13, 4111-4118.	2.1	11
428	Effect of Isomerization of Linking Units on the Photovoltaic Performance of PSMA-Type Polymer Acceptors in All-Polymer Solar Cells. Macromolecules, 2022, 55, 4420-4428.	2.2	11
429	Protonic Acid Doping Form in Poly(N-methylpyrrole). Polymer Journal, 1996, 28, 742-746.	1.3	10
430	Influence of the doped counteranions on the penetration of H+ cations through poly(N-methylpyrrole). Journal of Applied Polymer Science, 1996, 59, 1827-1832.	1.3	10
431	Fluorescence and sensitization performance of phenylene-vinylene-substituted polythiophene. Science Bulletin, 2009, 54, 1669-1676.	4.3	10
432	Synthesis and photovoltaic properties of dithienyl benzotriazole based poly(phenylene vinylene)s. Journal of Applied Polymer Science, 2011, 120, 2534-2542.	1.3	10

#	Article	IF	CITATIONS
433	Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives. RSC Advances, 2015, 5, 30145-30152.	1.7	10
434	Broad Bandgap D–A Copolymer Based on Bithiazole Acceptor Unit for Application in Highâ€Performance Polymer Solar Cells with Lower Fullerene Content. Macromolecular Rapid Communications, 2016, 37, 1066-1073.	2.0	10
435	Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. Angewandte Chemie, 2018, 130, 4670-4674.	1.6	10
436	Organic Solar Cells. , 2018, , 567-597.		10
437	Effects of DIO on the charge recombination behaviors of PTB7:PC71BM photovoltaics. Organic Electronics, 2019, 67, 50-56.	1.4	10
438	A low boiling-point and low-cost fluorinated additive improves the efficiency and stability of organic solar cells. Journal of Materials Chemistry C, 2020, 8, 15296-15302.	2.7	10
439	Effects of the Center Units of Smallâ€Molecule Donors on the Morphology, Photovoltaic Performance, and Device Stability of Allâ€Smallâ€Molecule Organic Solar Cells. Solar Rrl, 2021, 5, 2100515.	3.1	10
440	A small molecule acceptor with a heptacyclic benzodi(thienocyclopentafuran) central unit achieving 13.4% efficiency in polymer solar cells with low energy loss. Journal of Materials Chemistry C, 2021, 9, 2744-2751.	2.7	10
441	Highly Efficient Layerâ€byâ€Layer Processed Quaternary Organic Solar Cells with Improved Charge Transport and Reduced Energy Loss. Solar Rrl, 2022, 6, .	3.1	10
442	Electrochemical copolymerization of pyrrole and propylene oxide. Journal of Applied Polymer Science, 2003, 89, 2624-2627.	1.3	9
443	Tuning the photovoltaic parameters of thiophene-linked donor–acceptor liquid crystalline copolymers for organic photovoltaics. Polymer Chemistry, 2012, 3, 710.	1.9	9
444	Synthesis and Optoelectronic Properties of Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiopheneâ€Based Copolymers with Conjugated 2â€{2‣thylhexyl)â€3,4â€dimethoxythiophene Side Chains. Macromolecular Chemistry and Physics, 2016, 217, 1586-1599.	1.1	9
445	High-Efficiency All Polymer Solar Cell with a Low Voltage Loss of 0.56 V. ACS Applied Energy Materials, 2018, 1, 2350-2357.	2.5	9
446	Polymer Solar Cells: Ternary Polymer Solar Cells Facilitating Improved Efficiency and Stability (Adv.) Tj ETQq0 0 (Ͻ rgβT /Ον 11.1	erlock 10 Tf 5
447	Two reduction processes of conducting polypyrrole tosylate film in aqueous solutions. Journal of Applied Polymer Science, 2001, 79, 350-355.	1.3	8
448	A phenylenevinyleneâ€thiopheneâ€phenyleneethynylene copolymer: synthesis, characterization, and photovoltaic properties. Polymers for Advanced Technologies, 2008, 19, 865-871.	1.6	8
449	Copolymers of Thiophene and Cyanoâ€Substituted Phenylene: Facile Tuning of Electronic Energy Levels and their Photovoltaic Application. Macromolecular Chemistry and Physics, 2008, 209, 431-438.	1.1	8

#	Article	IF	CITATIONS
451	Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 61039-61046.	4.0	8
452	Synthesis, Spectroscopy, and Electrochemistry of Metallophthalocyanines Substituted by Propylenedithiotetrathiafulvalene Derivatives. Monatshefte Für Chemie, 2004, 135, 1167.	0.9	7
453	Polymer light-emitting electrochemical cell based on a novel poly(aryleneethynylene) consisting of ethynylfluorene and tetraphenyldiaminobiphenyl units. Polymers for Advanced Technologies, 2004, 15, 70-74.	1.6	7
454	Synthesis, characterization, and optoelectronic properties of two new polyfluorenes/poly(p-phenylenevinylene)s copolymers. Journal of Applied Polymer Science, 2006, 102, 3955-3962.	1.3	7
455	A polythiophene derivative with dioctyloxyltriphenylamineâ€vinylene conjugated side chain: Synthesis, hole mobility, and photovoltaic property. Journal of Applied Polymer Science, 2009, 113, 1415-1421.	1.3	7
456	Conjugated copolymers of cyanosubstituted poly(<i>p</i> â€phenylene vinylene) with phenylene ethynylene and thienylene vinylene moieties: Synthesis, optical, and electrochemical properties. Journal of Applied Polymer Science, 2010, 115, 1480-1488.	1.3	7
457	Surface modification and shape adjustment of polymer semiconductor nanowires. Journal of Materials Chemistry, 2011, 21, 9626.	6.7	7
458	Cooperative assembly of an active layer utilizing the synergistic effect of a functional fullerene triad as an acceptor for efficient P3HT-based PSCs. Journal of Materials Chemistry A, 2015, 3, 17991-18000.	5.2	7
459	Manipulating the photovoltaic properties of small-molecule donor materials by tailoring end-capped alkylthio substitution. RSC Advances, 2016, 6, 108908-108916.	1.7	7
460	Cellular Architectureâ€Based Allâ€Polymer Flexible Thinâ€Film Photodetectors with High Performance and Stability in Harsh Environment. Advanced Materials Technologies, 2017, 2, 1700185.	3.0	7
461	Efficient As ast Polymer Solar Cells with High and Stabilized Fill Factor. Solar Rrl, 2020, 4, 2000275.	3.1	7
462	Synthesis and electroluminescent properties of a novel copolymer with short alternating conjugated and non-conjugated blocks. Polymer International, 2003, 52, 343-346.	1.6	6
463	Electroluminescent fluoreneâ€based alternating polymers bearing triarylamine or carbazole moieties in the main chain: Synthesis and properties. Journal of Applied Polymer Science, 2009, 111, 978-987.	1.3	6
464	Using waterâ€soluble nickel acetate as hole collection layer for stable polymer solar cells. Journal of Applied Polymer Science, 2013, 128, 684-690.	1.3	6
465	Photovoltaic efficiency of solution-processable organic molecules reached near 10%. Science China Chemistry, 2015, 58, 191-191.	4.2	6
466	Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells*. Chinese Physics B, 2021, 30, 088803.	0.7	6
467	Synthesis and electrochemical characterization of soluble poly(p-phenylene vinylene) derivatives containing olefinic bonds at the side chain. Journal of Applied Polymer Science, 1999, 73, 2535-2539.	1.3	5
468	White organic light-emitting devices using Zn(BTZ)2 doped with Rubrene as emitting layer. Science Bulletin, 2005, 50, 509-513.	1.7	5

#	Article	IF	CITATIONS
469	Synthesis, characterization, and electroluminescence of new conjugated PPV derivatives bearing triphenylamine side-chain through a vinylene bridge. Polymers for Advanced Technologies, 2007, 18, 963-970.	1.6	5
470	New cyano-substituted copolymers containing biphenylenevinylene and bithienylenevinylene units: synthesis, optical, and electrochemical properties. Journal of Materials Science, 2009, 44, 4174-4180.	1.7	5
471	Enhancing the photovoltaic performance of quinoxalino[2,3-b′]porphyrinatozinc-based donor–acceptor copolymers by using 4,4′-bipyridine as a linear bidentate ligand additive. Journal of Materials Chemistry A, 2015, 3, 21460-21470.	5.2	5
472	Self-doped n-type water/alcohol-soluble conjugated polymers ETL for high-performance polymer and perovskite solar cells. Science China Chemistry, 2016, 59, 1430-1431.	4.2	5
473	Conjugated polymer donor with alkylthio-thiophene π-bridge for efficient polymer solar cells. Organic Electronics, 2018, 63, 289-295.	1.4	5
474	Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells. Science China Chemistry, 2021, 64, 565-575.	4.2	5
475	A Largeâ€Bandgap Guest Material Enabling Improved Efficiency and Reduced Energy Loss for Ternary Polymer Solar Cells. Solar Rrl, 2021, 5, 2100013.	3.1	5
476	Molecular Properties and Aggregation Behavior of Small-Molecule Acceptors Calculated by Molecular Simulation. ACS Omega, 2021, 6, 14467-14475.	1.6	5
477	Nanoporous Polymer Reflectors for Organic Solar Cells. Energy Technology, 2022, 10, 2100676.	1.8	5
478	A Cost-Effective Alpha-Fluorinated Bithienyl Benzodithiophene Unit for High-Performance Polymer Donor Material. ACS Applied Materials & Interfaces, 2021, 13, 55403-55411.	4.0	5
479	High-efficiency single-junction organic solar cells enabled by double-fibril network morphology. Science Bulletin, 2022, 67, 1310-1312.	4.3	5
480	Effect of Substituents on the Redox Potentials of C ₆₀ Derivatives. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 963-980.	0.6	4
481	Electrochemistry of the films of a novel class C60 covalently linked PPV derivative: Electrochemical quartz crystal microbalance study in acetonitrile solutions of tetra-n-butylammonium cations. Journal of Applied Polymer Science, 2002, 86, 2737-2741.	1.3	4
482	Synthesis, optical spectroscopy and electrochemistry of a D-σ-A compound derived from magnesium phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1042-1046.	0.4	4
483	Branched poly(<i>p</i> â€phenylenevinylene): Synthesis, optical and electrochemical properties. Journal of Applied Polymer Science, 2008, 110, 1002-1008.	1.3	4
484	Synthesis and properties of partially conjugated hyperbranched lightâ€emitting polymers. Journal of Applied Polymer Science, 2010, 117, 517-523.	1.3	4
485	Incorporation of Hexaâ€ <i>peri</i> â€hexabenzocoronene (HBC) into Carbazole–Benzoâ€2,1,3â€thiadiazole Copolymers to Improve Hole Mobility and Photovoltaic Performance. Chemistry - an Asian Journal, 2016, 11, 766-774.	1.7	4
486	A new fluoropyrido[3,4-b]pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	1.9	4

1

#	Article	IF	CITATIONS
487	Synthesis and photovoltaic properties of a non-fullerene acceptor with F-phenylalkoxy as a side chain. New Journal of Chemistry, 2018, 42, 19279-19284.	1.4	4
488	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie, 2018, 130, 13817-13822.	1.6	4
489	Fused-ring acceptors based on quinoxaline unit for highly efficient single-junction organic solar cells with low charge recombination. Organic Electronics, 2021, 98, 106282.	1.4	4
490	Effect of Solvents and Supporting Electrolytes on the Electrochemical Properties of C70and its Comparison with C60. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1563-1577.	0.6	3
491	Synthesis and light-emitting properties of poly[9-(4′-tert-butyl-phenylenemethene)-fluoroene-co-9,9-dioctylfluorene]. Journal of Materials Science, 2007, 42, 1325-1329.	1.7	3
492	Solar Cells: A Star‧haped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5224-5224.	11.1	3
493	Impact of alkoxyl tail of fullerene dyad acceptor on crystalline microstructure for efficient external treatment-free polymer solar cells with poly(3-hexylthiophene) as donor. Chemical Research in Chinese Universities, 2015, 31, 865-872.	1.3	3
494	A new perspective for organic solar cells: triplet nonfullerene acceptors. Science China Chemistry, 2018, 61, 637-638.	4.2	3
495	Highly efficient fused ring electron acceptors based on a new undecacyclic core. Materials Chemistry Frontiers, 2021, 5, 2001-2006.	3.2	3
496	Anion dominated electrochemical process of poly(N-methylpyrrole). Journal of Applied Polymer Science, 1996, 61, 1487-1491.	1.3	2
497	Silicon nanorods / P3HT hybrid solar cells. , 2009, , .		2
498	Comparative study of the optical, electrochemical, electrolumiscent, and photovoltaic properties of dendritic pendants modified poly(<i>p</i> â€phenylene vinylene)s. Polymers for Advanced Technologies, 2011, 22, 2503-2508.	1.6	2
499	Synthesis and Photovoltaic Properties of a Donorâ€Acceptor Copolymer of Dithienosilole and 5,6â€Bis(octyloxy)benzo[1,2,5]thiadiazole. Macromolecular Chemistry and Physics, 2012, 213, 2529-2535.	1.1	2
500	Synthesis and photovoltaic properties of alternative copolymers of benzo[1,2-b:4,5-b′]dithiophene and thiophene. Polymer Bulletin, 2012, 68, 2107-2119.	1.7	2
501	Synthesis and characterizations of poly(4â€alkylthiazole vinylene). Journal of Applied Polymer Science, 2012, 124, 847-854.	1.3	2
502	Flexible Solar Cells: Selfâ€Doping Fullerene Electrolyteâ€Based Electron Transport Layer for Allâ€Roomâ€Temperatureâ€Processed Highâ€Performance Flexible Polymer Solar Cells (Adv. Funct. Mater.) Tj ET	Q q0 800 rg	gB ⊉ /Overlock
503	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	1.6	2

504Synthesis and properties of alkyl-substituted poly(1,4-phenylenevinylene) derivatives. Journal of
Applied Polymer Science, 2001, 80, 1299-1304.1.3

#	Article	IF	CITATIONS
505	Two thieno[3,4b]pyrazineâ€containing copolymers: synthesis, characterization, and application in mercury ions detection. Polymers for Advanced Technologies, 2010, 21, 256-262.	1.6	1
506	Benzo[1,2â€b:4,5â€b′]dithiopheneâ€ <i>alt</i> â€terthiophene Copolymers Containing Styrylâ€Triphenylamine Chains: Synthesis and Photovoltaic Performance Optimization with Fullerene Acceptors. Macromolecular Chemistry and Physics, 2013, 214, 1081-1088.	Side 1.1	1
507	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. ACS Applied Materials & Interfaces, 2017, 9, 24451-24455.	4.0	1
508	High efficient light-emitting diodes using polystyrene as matrix. Science Bulletin, 2003, 48, 853-855.	4.3	0
509	Synthesis, spectroscopy and electrochemistry of a new phthalonitrile derivative with substituted PDT-TTF unit. Journal of Porphyrins and Phthalocyanines, 2003, 07, 191-198.	0.4	0
510	Developing bright and color-saturated quantum dot light emitting diodes towards next generation displays and solid state lighting. , 2008, , .		0
511	Higher LUMO Level Endohedral Fullerene and Fullerene Bisadduct Acceptors for Polymer Solar Cells. , 2014, , 417-431.		0
512	Improving photovoltaic performance of n-OS acceptors via aryl substitution on its end groups. Science China Chemistry, 2018, 61, 1199-1200.	4.2	0
513	All-in-one strategy: overcome the challenges in the device enlargement of perovskite solar cells. Science China Chemistry, 0, , 1.	4.2	0