
Daniel Summers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors and Promote SARM1-Dependent Axon Degeneration. Molecular Neurobiology, 2020, 57, 1146-1158.	4.0	59
2	Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. Journal of Experimental Medicine, 2019, 216, 294-303.	8.5	107
3	Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8746-E8754.	7.1	59
4	SARM1-specific motifs in the TIR domain enable NAD ⁺ loss and regulate injury-induced SARM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6271-E6280.	7.1	115
5	Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron, 2016, 89, 449-460.	8.1	277
6	Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons. Journal of Neuroscience, 2014, 34, 9338-9350.	3.6	148
7	Sarm1-Mediated Axon Degeneration Requires Both SAM and TIR Interactions. Journal of Neuroscience, 2013, 33, 13569-13580.	3.6	302
8	The Type II Hsp40 Sis1 Cooperates with Hsp70 and the E3 Ligase Ubr1 to Promote Degradation of Terminally Misfolded Cytosolic Protein. PLoS ONE, 2013, 8, e52099.	2.5	73
9	The Type I Hsp40 Ydj1 Utilizes a Farnesyl Moiety and Zinc Finger-like Region to Suppress Prion Toxicity. Journal of Biological Chemistry, 2009, 284, 3628-3639.	3.4	38
10	Identification of a consensus motif in substrates bound by a Type I Hsp40. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11073-11078.	7.1	37
11	Prion propagation by Hsp40 molecular chaperones. Prion, 2009, 3, 59-64.	1.8	28
12	Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion, 2009, 3, 51-58.	1.8	51
13	Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends in Biochemical Sciences, 2009, 34, 230-233.	7.5	72