Malin Flodström-Tullberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10665333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNase L and Double-Stranded RNA-Dependent Protein Kinase Exert Complementary Roles in Islet Cell Defense during Coxsackievirus Infection. Journal of Immunology, 2005, 174, 1171-1177.	0.8	91
2	Interferons induce an antiviral state in human pancreatic islet cells. Virology, 2007, 367, 92-101.	2.4	85
3	Target Cell Expression of Suppressor of Cytokine Signaling-1 Prevents Diabetes in the NOD Mouse. Diabetes, 2003, 52, 2696-2700.	0.6	77
4	Distinct Phenotype and Function of NK Cells in the Pancreas of Nonobese Diabetic Mice. Journal of Immunology, 2010, 184, 2272-2280.	0.8	70
5	Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection. Virology, 2010, 401, 42-48.	2.4	45
6	A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia, 2015, 58, 346-354.	6.3	41
7	Induction of an Antiviral State and Attenuated Coxsackievirus Replication in Type III Interferon-Treated Primary Human Pancreatic Islets. Journal of Virology, 2013, 87, 7646-7654.	3.4	36
8	IFN-Î ³ production dominates the early human natural killer cell response to Coxsackievirus infection. Cellular Microbiology, 2007, 10, 071027034427001-???.	2.1	26
9	Viral infections: their elusive role in regulating susceptibility to autoimmune disease. Microbes and Infection, 2003, 5, 911-921.	1.9	24
10	The target tissue in autoimmunity – an influential niche. European Journal of Immunology, 2007, 37, 589-597.	2.9	24
11	Differences in Suppressor of Cytokine Signaling-1 (SOCS-1) Expressing Islet Allograft Destruction in Normal BALB/c and Spontaneously-Diabetic NOD Recipient Mice. Transplantation, 2005, 79, 1104-1109.	1.0	20
12	A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Scientific Reports, 2018, 8, 33.	3.3	18
13	Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology. Journal of Clinical Virology, 2015, 69, 165-171.	3.1	16
14	Beta-cell specific expression of suppressor of cytokine signaling-1 (SOCS-1) delays islet allograft rejection by down-regulating Interferon Regulatory Factor-1 (IRF-1) signaling. Transplant Immunology, 2011, 24, 181-188.	1.2	15
15	Suppressor of cytokine signaling-1 inhibits caspase activation and protects from cytokine-induced beta cell death. Cellular and Molecular Life Sciences, 2009, 66, 3787-3795.	5.4	13
16	Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Reply to Hansson SF, Korsgren S, Pontén F et al [letter]. Diabetologia, 2014, 57, 647-649.	6.3	12
17	Enterovirus Exposure Uniquely Discriminates Type 1 Diabetes Patients with a Homozygous from a Heterozygous Melanoma Differentiation-Associated Protein 5/Interferon Induced with Helicase C Domain 1 A946T Genotype. Viral Immun <u>ology, 2016, 29, 389-397.</u>	1.3	9
18	A Link Between a Common Mutation in CFTR and Impaired Innate and Adaptive Viral Defense. Journal of Infectious Diseases, 2017, 216, 1308-1317.	4.0	9

#	Article	IF	CITATIONS
19	Inhibition of Type III Interferon Expression in Intestinal Epithelial Cells—A Strategy Used by Coxsackie B Virus to Evade the Host's Innate Immune Response at the Primary Site of Infection?. Microorganisms, 2021, 9, 105.	3.6	8
20	Depletion of ILâ€2 receptor βâ€positive cells protects from diabetes in nonâ€obese diabetic mice. Immunology and Cell Biology, 2016, 94, 177-184	2.3	6