Terence J Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The burden of size and growth for the juveniles of large mammalian herbivores: Structural and functional constraints in the feeding biology of juveniles relative to adults in red kangaroos, <i>Osphranter rufus</i> . Ecology and Evolution, 2021, 11, 9062-9078.	0.8	7
2	Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 517-528.	0.7	6
3	The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? The polar bear and marsupial koala compared. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 273-284.	0.7	48
4	The kangaroo's tail propels and powers pentapedal locomotion. Biology Letters, 2014, 10, 20140381.	1.0	61
5	Water use and feeding patterns of the marsupial western grey kangaroo (Macropus fuliginosus) Tj ETQq1 1 0.784. livestock, the Merino sheep (Ovis aries). Mammalian Biology, 2014, 79, 1-8.	314 rgBT 0.8	/Overlock 1(11
6	Muscle mitochondrial volume and aerobic capacity in a small marsupial (<i>Sminthopsis) Tj ETQq0 0 0 rgBT /Overle levels in mammals generally Journal of Experimental Biology, 2013, 216, 1330-7.</i>	ock 10 Tf 0.8	50 547 Td (9
7	The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles. Journal of Experimental Biology, 2012, 215, 3223-30.	0.8	4
8	Kangaroos. , 2012, , .		34
9	Physiological Mechanisms in Coping with Climate Change. Physiological and Biochemical Zoology, 2010, 83, 713-720.	0.6	108
10	Ventilation patterns in red kangaroos (<i>Macropus rufus</i> Desmarest): juveniles work harder than adults at thermal extremes, but extract more oxygen per breath at thermoneutrality. Journal of Experimental Biology, 2007, 210, 2723-2729.	0.8	4
11	Dehydration, with and without heat, in kangaroos from mesic and arid habitats: different thermal responses including varying patterns in heterothermy in the field and laboratory. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 797-807.	0.7	13
12	How much do kangaroos of differing age and size eat relative to domestic stock?: implications for the arid rangelands. , 2007, , 96-101.		7
13	Water use and the thermoregulatory behaviour of kangaroos in arid regions: insights into the colonisation of arid rangelands in Australia by the Eastern Grey Kangaroo (Macropus giganteus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 45-53.	0.7	39
14	Endogenous Nitrogen Excretion by Red Kangaroos (Macropus rufus): Effects of Animal Age and Forage Quality. Physiological and Biochemical Zoology, 2006, 79, 424-436.	0.6	8
15	Forage fibre digestion, rates of feed passage and gut fill in juvenile and adult red kangaroos Macropus rufus Desmarest: why body size matters. Journal of Experimental Biology, 2006, 209, 1535-1547.	0.8	36
16	Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?. Journal of Experimental Biology, 2004, 207, 2811-2821.	0.8	15
17	Thermoregulation in Juvenile Red Kangaroos (Macropus rufus) after Pouch Exit: Higher Metabolism and Evaporative Water Requirements. Physiological and Biochemical Zoology, 2001, 74, 917-927.	0.6	17
18	Digestive function in Australian magpie geese (Anseranas semipalmata). Australian Journal of Zoology, 2000, 48, 265.	0.6	16

TERENCE J DAWSON

#	Article	IF	CITATIONS
19	Thermoregulation by Kangaroos from Mesic and Arid Habitats: Influence of Temperature on Routes of Heat Loss in Eastern Grey Kangaroos (Macropus giganteus) and Red Kangaroos (Macropus rufus). Physiological and Biochemical Zoology, 2000, 73, 374-381.	0.6	56
20	Ventilatory Accommodation of Oxygen Demand and Respiratory Water Loss in Kangaroos from Mesic and Arid Environments, the Eastern Grey Kangaroo (Macropus giganteus) and the Red Kangaroo (Macropus rufus). Physiological and Biochemical Zoology, 2000, 73, 382-388.	0.6	34
21	Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 41-49.	0.7	81
22	Diets of mammalian herbivores in Australian arid, hilly shrublands: seasonal effects on overlap between euros (hill kangaroos), sheep and feral goats, and on dietary niche breadths and electivities. Journal of Arid Environments, 1996, 34, 491-506.	1.2	36
23	The heat load from solar radiation on a large, diurnally active bird, the emu (Dromaius) Tj ETQq1 1 0.784314 rgBT	/Qyerlock	10 Tf 50 58
24	Diets of mammalian herbivores in Australian arid shrublands: seasonal effects on overlap between red kangaroos, sheep and rabbits and on dietary niche breadths and electivities. Journal of Arid Environments, 1994, 26, 257-271.	1.2	73
25	Observations of differential sex/age class mobility in red kangaroos (Macropus rufus). Journal of Arid Environments, 1994, 27, 169-177.	1.2	15
26	Ventilatory Accommodation of Changing Oxygen Consumption in Dasyurid Marsupials. Physiological Zoology, 1994, 67, 418-437.	1.5	30
27	The role of the kidney in electrolyte and nitrogen excretion in a large flightless bird, the emu, during different osmotic regimes, including dehydration and nesting. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1991, 161, 165.	0.7	22
28	Body temperature, water flux and estimated energy expenditure of incubating emus (Dromaius) Tj ETQq0 0 0 rgB	T /Overloc 0.7	k 10 Tf 50 3 16
29	Gas exchange in the lung of a dasyurid marsupial: morphometric estimation of diffusion capacity and blood oxygen uptake kinetics. Respiration Physiology, 1989, 77, 309-322.	2.8	14
30	Emu Winter Incubation: Thermal, Water, and Energy Relations. , 1989, , 315-324.		2
31	Thermal and Water Relations of Emu Eggs during Natural Incubation. Physiological Zoology, 1988, 61, 483-494.	1.5	13
32	Use of helium-oxygen to examine the effect of cold acclimation on the summit metabolism of a marsupial, Dasyuroides byrnei. Comparative Biochemistry and Physiology A, Comparative Physiology, 1985, 81, 445-449.	0.7	16
33	Fiber Digestion in the Emu, Dromaius novaehollandiae, a Large Bird with a Simple Gut and High Rates of Passage. Physiological Zoology, 1984, 57, 70-84.	1.5	84
34	Changes in the thermal balance of a marsupial (Dasyuroides byrnei) during cold and warm acclimation. Journal of Thermal Biology, 1984, 9, 199-204.	1.1	22
35	Digestion in the emu: Low energy and nitrogen requirements of this large ratite bird. Comparative Biochemistry and Physiology A, Comparative Physiology, 1983, 75, 41-45.	0.7	39
36	Metabolic scope and conductance in response to cold of some dasyurid marsupials and Australian rodents. Comparative Biochemistry and Physiology A, Comparative Physiology, 1982, 71, 59-64.	0.7	46

TERENCE J DAWSON

#	Article	IF	CITATIONS
37	Thermal and Energetic Problems of Semiaquatic Mammals: A Study of the Australian Water Rat, including Comparisons with the Platypus. Physiological Zoology, 1981, 54, 285-296.	1.5	47
38	Cardiovascular characteristics of two resting marsupials: An insight into the cardio-respiratory allometry of marsupials. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1981, 145, 95-100.	0.7	30
39	Resting metabolic rates of ratite birds: The kiwis and the emu. Comparative Biochemistry and Physiology A, Comparative Physiology, 1978, 60, 479-481.	0.7	43
40	Metabolism, thermoregulation and torpor in shrew sized marsupials of the genus planigale. Comparative Biochemistry and Physiology A, Comparative Physiology, 1978, 59, 305-309.	0.7	38
41	Seasonal variations in the body temperatures of unrestrained kangaroos (Macropodidae: Marsupialia). Comparative Biochemistry and Physiology A, Comparative Physiology, 1977, 56, 59-67.	0.7	19
42	Energetic cost of locomotion in Australian hopping mice. Nature, 1976, 259, 305-307.	13.7	37
43	Water usage and diet preferences of free ranging kangaroos, sheep and feral goats in the Australian arid zone during summer. Journal of Zoology, 1975, 177, 1-23.	0.8	70
44	The cuscus (Phalanger maculatus) ? a marsupial sloth?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1973, 83, 41-50.	0.7	23
45	Energetic Cost of Locomotion in Kangaroos. Nature, 1973, 246, 313-314.	13.7	414
46	Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus. Comparative Biochemistry and Physiology A, Comparative Physiology, 1973, 46, 153-169.	0.7	48
47	"PRIMITIVE―MAMMALS. , 1973, , 1-46.		17
48	A comparison of the insulative and reflective properties of the fur of desert kangaroos. Comparative Biochemistry and Physiology, 1970, 37, 23-38.	1.1	42
49	Influence of the respiratory response to moderate and severe heat on the blood gas values of a macropodid marsupial (Macropus eugenii). Comparative Biochemistry and Physiology, 1970, 37, 59-66.	1.1	9
50	A Bioclimatological Comparison of the Summer Day Microenvironments of Two Species of Arid-Zone Kangaroo. Ecology, 1969, 50, 328-332.	1.5	29
51	Standard Energy Metabolism of Marsupials. Nature, 1969, 221, 383-383.	13.7	43
52	Thermal balance of the macropodid marsupial Macropus eugenii desmarest. Comparative Biochemistry and Physiology, 1969, 31, 645-653.	1.1	48
53	Temperature regulation and evaporative water loss in the brush-tailed possum Trichosurus vulpecula. Comparative Biochemistry and Physiology, 1969, 28, 401-407.	1.1	46
54	EFFECT OF ANAEMIA ON OXYGEN TRANSPORT IN SHEEP WITH DIFFERENT HAEMOGLOBIN TYPES. The Australian Journal of Experimental Biology and Medical Science, 1967, 45, 437-444.	0.7	6

#	Article	IF	CITATIONS
55	Relationship between oxygen consumption and hypoxia in sheep with different haemoglobins. Life Sciences, 1966, 5, 679-685.	2.0	0
56	Effect of thermal conductance on water economy in the antelope jack rabbit,Lepus alleni. Journal of Cellular Physiology, 1966, 67, 463-471.	2.0	120