
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10663471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced pluripotent stem cells for defining Parkinsonian patient subtypes: a further step toward precision medicine. Neural Regeneration Research, 2022, 17, 767.	3.0	4
2	Structural Plasticity of Dopaminergic Neurons Requires the Activation of the D3R-nAChR Heteromer and the PI3K-ERK1/2/Akt-Induced Expression of c-Fos and p70S6K Signaling Pathway. Molecular Neurobiology, 2022, 59, 2129-2149.	4.0	5
3	Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor–Receptor Interaction and Striatal Function. Current Topics in Behavioral Neurosciences, 2022, , 1.	1.7	1
4	Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiology of Aging, 2021, 99, 65-78.	3.1	14
5	Establishment and characterization of induced pluripotent stem cell (iPSCs) line UNIBSi014-A from a healthy female donor. Stem Cell Research, 2021, 51, 102216.	0.7	2
6	Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules, 2020, 10, 1016.	4.0	28
7	Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiology of Disease, 2020, 138, 104789.	4.4	19
8	Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 68.	3.4	56
9	Generation of two human induced pluripotent stem cell lines, UNIBSi012-A and UNIBSi013-A, from two patients with treatment-resistant depression. Stem Cell Research, 2020, 49, 102104.	0.7	1
10	Nicotine prevents alpha-synuclein accumulation in mouse and human iPSC-derived dopaminergic neurons through activation of the dopamine D3- acetylcholine nicotinic receptor heteromer. Neurobiology of Disease, 2019, 129, 1-12.	4.4	25
11	The novel hybrid agonist HyNDA-1 targets the D3R-nAChR heteromeric complex in dopaminergic neurons. Biochemical Pharmacology, 2019, 163, 154-168.	4.4	14
12	In vitro antitumor activity of progesterone in human adrenocortical carcinoma. Endocrine, 2019, 63, 592-601.	2.3	21
13	Synapsin III is a key component of αâ€synuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018, 28, 875-888.	4.1	37
14	Role of Dopamine D2/D3 Receptors in Development, Plasticity, and Neuroprotection in Human iPSC-Derived Midbrain Dopaminergic Neurons. Molecular Neurobiology, 2018, 55, 1054-1067.	4.0	30
15	Palbociclib inhibits proliferation of human adrenocortical tumor cells. Endocrine, 2018, 59, 213-217.	2.3	28
16	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	7.7	53
17	Dopamine Transporter/α-Synuclein Complexes Are Altered in the Post Mortem Caudate Putamen of Parkinson's Disease: An In Situ Proximity Ligation Assay Study. International Journal of Molecular Sciences, 2018, 19, 1611.	4.1	20
18	Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. European Neuropsychopharmacology, 2017, 27, 313-324.	0.7	27

#	Article	IF	CITATIONS
19	The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease. Experimental Neurology, 2017, 291, 1-7.	4.1	17
20	Depletion of Progranulin Reduces GluN2B-Containing NMDA Receptor Density, Tau Phosphorylation, and Dendritic Arborization in Mouse Primary Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 164-175.	2.5	11
21	The Contribution of <i>α</i> -Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plasticity, 2017, 2017, 1-15.	2.2	70
22	Shpâ€2 knockdown prevents <scp>l</scp> â€dopaâ€induced dyskinesia in a rat model of Parkinson's disease. Movement Disorders, 2016, 31, 512-520.	3.9	14
23	Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathology and Applied Neurobiology, 2016, 42, 77-94.	3.2	163
24	Antisecretive and Antitumor Activity of Abiraterone Acetate in Human Adrenocortical Cancer: A Preclinical Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4594-4602.	3.6	31
25	Mitochondrial Dysfunction andα-Synuclein Synaptic Pathology in Parkinson's Disease: Who's on First?. Parkinson's Disease, 2015, 2015, 1-10.	1.1	62
26	Bifunctional compounds targeting both D2 and non- $\hat{1}\pm7$ nACh receptors: Design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2015, 101, 367-383.	5.5	12
27	Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochemistry International, 2015, 85-86, 14-23.	3.8	30
28	α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. Journal of Cell Science, 2015, 128, 2231-2243.	2.0	99
29	The D3 dopamine receptor: From structural interactions to function. European Neuropsychopharmacology, 2015, 25, 1462-1469.	0.7	35
30	GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Experimental Cell Research, 2014, 323, 100-111.	2.6	61
31	The "In Situ―Proximity Ligation Assay to Probe Protein–Protein Interactions in Intact Tissues. Methods in Molecular Biology, 2014, 1174, 397-405.	0.9	35
32	Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiology of Disease, 2013, 54, 339-348.	4.4	33
33	Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. Molecular Pharmacology, 2013, 83, 1176-1189.	2.3	61
34	From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson's disease. Brain Research, 2012, 1476, 183-202.	2.2	89
35	Nerve growth factor, D2 receptor isoforms, and pituitary tumors. Endocrine, 2012, 42, 466-467.	2.3	4
36	Preâ€synaptic dopamine D ₃ receptor mediates cocaineâ€induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. Journal of Neurochemistry, 2012, 120, 765-778.	3.9	43

#	Article	IF	CITATIONS
37	Alpha-synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Research, 2012, 1432, 95-113.	2.2	39
38	Redistribution of DAT/α-Synuclein Complexes Visualized by "In Situ―Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease. PLoS ONE, 2011, 6, e27959.	2.5	62
39	Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. Journal of Neurochemistry, 2011, 116, 588-605.	3.9	178
40	The tyrosine phosphatase Shpâ€2 interacts with the dopamine D ₁ receptor and triggers D ₁ â€mediated Erk signaling in striatal neurons. Journal of Neurochemistry, 2011, 117, 253-263.	3.9	25
41	Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Current Opinion in Pharmacology, 2010, 10, 87-92.	3.5	58
42	Nerve growth factor signaling in prostate health and disease. Growth Factors, 2010, 28, 191-201.	1.7	33
43	The neurobiology of dopamine receptors: evolution from the dual concept to heterodimer complexes. Journal of Receptor and Signal Transduction Research, 2010, 30, 347-354.	2.5	36
44	Molecular and pharmacological detection of dopaminergic receptors in the human male urinary tract. Neurourology and Urodynamics, 2009, 28, 343-348.	1.5	6
45	Alphaâ€synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D ₂ /D ₃ receptor activation. Journal of Neurochemistry, 2008, 106, 560-577.	3.9	74
46	Dopamine D3 receptorâ€preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signalâ€regulated kinase phosphorylation. European Journal of Neuroscience, 2008, 28, 1231-1240.	2.6	48
47	Role of receptor heterodimers in the development of l-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, S159-S164.	2.2	20
48	Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization. Molecular Pharmacology, 2008, 74, 59-69.	2.3	195
49	Identification and Characterization of Two Nuclear Factor-ήB Sites in the Regulatory Region of the Dopamine D2 Receptor. Endocrinology, 2007, 148, 2563-2570.	2.8	43
50	Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: Role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Molecular and Cellular Neurosciences, 2006, 31, 284-292.	2.2	14
51	The NMDA/D1 Receptor Complex as a New Target in Drug Development. Current Topics in Medicinal Chemistry, 2006, 6, 801-808.	2.1	72
52	Loss of Synaptic D1 Dopamine/N-Methyl-d-aspartate Glutamate Receptor Complexes in l-DOPA-Induced Dyskinesia in the Rat. Molecular Pharmacology, 2006, 69, 805-812.	2.3	75
53	Oligomerization of Dopamine D1 and Clutamate NMDA Receptors: A New Mechanism Regulating Striatal Function. , 2005, , 141-149.		0
54	Nerve Growth Factor Restores p53 Function in Pituitary Tumor Cell Lines via trkA-Mediated Activation of Phosphatidylinositol 3-Kinase. Molecular Endocrinology, 2004, 18, 162-172.	3.7	18

#	Article	IF	CITATIONS
55	Increased serum concentration of nerve growth factor in patients with microprolactinoma. Neuropeptides, 2004, 38, 21-24.	2.2	7
56	Regulation of Dopamine D1 Receptor Trafficking and Desensitization by Oligomerization with Glutamate N-Methyl-D-aspartate Receptors. Journal of Biological Chemistry, 2003, 278, 20196-20202.	3.4	200
57	Nerve Growth Factor Regulates Dopamine D2 Receptor Expression in Prolactinoma Cell Lines via p75NGFR-Mediated Activation of Nuclear Factor-IºB. Molecular Endocrinology, 2002, 16, 353-366.	3.7	66
58	Nerve growth factor and retinoic acid interactions in the control of small cell lung cancer proliferation. European Journal of Endocrinology, 2002, 147, 371-379.	3.7	12
59	Nerve growth factor induces the re-expression of functional androgen receptors and p75(NGFR) in the androgen-insensitive prostate cancer cell line DU145. European Journal of Endocrinology, 2002, 147, 407-415.	3.7	22
60	Differential gene expression of dopamine D-2 receptor subtypes in rat chromaffin cells and sympathetic neurons in culture. NeuroReport, 2000, 11, 2467-2471.	1.2	6
61	Growth factors in pituitary tumors. Pituitary, 1999, 1, 153-158.	2.9	15
62	Nerve Growth Factor in Pituitary Development and Pituitary Tumors. Frontiers in Neuroendocrinology, 1998, 19, 128-150.	5.2	34
63	Growth factors in the pathogenesis of prolactin-secreting tumors. Journal of Endocrinological Investigation, 1998, 21, 402-411.	3.3	5
64	Dopamine Receptors: From Structure to Function. Physiological Reviews, 1998, 78, 189-225.	28.8	3,059
65	Anterior Pituitary Hypoplasia and Dwarfism in Mice Lacking the Dopamine Transporter. Neuron, 1997, 19, 127-138.	8.1	192
66	Opposing roles for D-1 and D-2 dopamine receptors in the regulation of lower esophageal sphincter motility in the rat. Life Sciences, 1994, 54, 1035-1045.	4.3	10
67	Epidermal Growth Factor Promotes Uncoupling from Adenylyl Cyclase of the Rat D _{2S} Receptor Expressed in GH4C1 Cells. Journal of Neurochemistry, 1994, 62, 907-915.	3.9	10
68	L-α-glycerylphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. European Journal of Pharmacology, 1992, 211, 351-358.	3.5	65
69	Effects of chronic treatment with L-alpha-glycerylphosphorylcholine on hippocampal cholinergic transmission in the rat. Drug Development Research, 1992, 27, 277-286.	2.9	1
70	Epidermal Growth Factor Induces the Functional Expression of Dopamine Receptors in the GH3 Cell Line*. Endocrinology, 1991, 128, 13-20.	2.8	61
71	Low doses of I-sulpiride down-regulate striatal and cortical dopamine receptors and β-adrenoceptors. European Journal of Pharmacology, 1991, 199, 247-253.	3.5	14
72	Dopaminergic Regulation of Aldosterone Secretion. American Journal of Hypertension, 1990, 3, 93S-95S.	2.0	15

#	Article	IF	CITATION
73	Repeated administration of lisuride down-regulates dopamine D-2 receptor function in mesostriatal and in mesolimbocortical rat brain regions. European Journal of Pharmacology, 1990, 176, 85-90.	3.5	11
74	Evidence for the presence of both D-1 and D-2 dopamine receptors in human esophagus. Life Sciences, 1990, 47, 447-455.	4.3	10
75	Differential effect of acute reserpine administration on D-1 and D-2 dopaminergic receptor density and function in rat striatum. Neurochemistry International, 1989, 14, 61-64.	3.8	9
76	Repeated reserpine administration up-regulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH 23390 binding. Brain Research, 1989, 483, 117-122.	2.2	58
77	Dopaminergic Receptor Mechanisms Modulating the Renin-Angiotensin System and Aldosterone Secretion. Journal of Cardiovascular Pharmacology, 1989, 14, S29-S39.	1.9	6
78	Pharmacological characterization of D1 and D2 dopamine receptors in rat limbocortical areas. I. Frontal cortex. Neuroscience Letters, 1988, 87, 247-252.	2.1	17
79	Pharmacological characterization of D1 and D2 dopamine receptors in rat limbocortical areas. II. Dorsal hippocampus. Neuroscience Letters, 1988, 87, 253-258.	2.1	30
80	ldentification and Characterization of Postsynaptic D1- and D2-Dopamine Receptors in the Cardiovascular System. Journal of Cardiovascular Pharmacology, 1988, 11, 643-650.	1.9	45
81	Repeated administration of (â^') sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions. European Journal of Pharmacology, 1987, 138, 45-51.	3.5	39
82	Striatal adenylate cyclase-inhibiting dopamine D2 receptors are not affected by the aging process. Neuroscience Letters, 1987, 75, 38-42.	2.1	13
83	D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent of cyclic AMP. Neuroscience Letters, 1986, 71, 192-196.	2.1	79
84	Characterization of Dopamine Receptors Associated with Aldosterone Secretion in Rat Adrenal Glomerulosa*. Endocrinology, 1986, 119, 2227-2232.	2.8	48
85	Dopamine Uptake is Differentially Regulated in Rat Striatum and Nucleus Accumbens. Journal of Neurochemistry, 1985, 45, 51-56.	3.9	132
86	Identification of D-2 dopaminergic receptors in bovine adrenal cortex. Life Sciences, 1985, 37, 2539-2548.	4.3	15
87	Evidence for the presence of D1 and D2 dopamine receptors in the rat adrenal cortex. European Journal of Pharmacology, 1985, 109, 315-316.	3.5	23