List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryo-EM structure of translesion DNA synthesis polymerase $\hat{I}\P$ with a base pair mismatch. Nature Communications, 2022, 13, 1050.	5.8	7
2	A novel role of DNA polymerase λ in translesion synthesis in conjunction with DNA polymerase ζ. Life Science Alliance, 2021, 4, e202000900.	1.3	10
3	Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase. Nature Communications, 2021, 12, 4020.	5.8	18
4	DNA polymerase λ promotes error-free replication through Watson–Crick impairing N1-methyl-deoxyadenosine adduct in conjunction with DNA polymerase ζ. Journal of Biological Chemistry, 2021, 297, 100868.	1.6	4
5	Implications of inhibition of Rev1 interaction with Y family DNA polymerases for cisplatin chemotherapy. Genes and Development, 2021, 35, 1256-1270.	2.7	6
6	Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nature Structural and Molecular Biology, 2020, 27, 913-924.	3.6	42
7	Genetic evidence for reconfiguration of DNA polymerase Î, active site for error-free translesion synthesis in human cells. Journal of Biological Chemistry, 2020, 295, 5918-5927.	1.6	7
8	Structural insights into mutagenicity of anticancer nucleoside analog cytarabine during replication by DNA polymerase Î. Scientific Reports, 2019, 9, 16400.	1.6	5
9	Cryo-EM structure and dynamics of eukaryotic DNA polymerase δholoenzyme. Nature Structural and Molecular Biology, 2019, 26, 955-962.	3.6	40
10	DNA polymerase Î, accomplishes translesion synthesis opposite 1,N ⁶ -ethenodeoxyadenosine with a remarkably high fidelity in human cells. Genes and Development, 2019, 33, 282-287.	2.7	12
11	Error-Prone Replication through UV Lesions by DNA Polymerase Î, Protects against Skin Cancers. Cell, 2019, 176, 1295-1309.e15.	13.5	77
12	Translesion synthesis DNA polymerases η, Î1, and ν promote mutagenic replication through the anticancer nucleoside cytarabine. Journal of Biological Chemistry, 2019, 294, 19048-19054.	1.6	7
13	Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct. Journal of Biological Chemistry, 2018, 293, 2949-2958.	1.6	7
14	Structural basis for polymerase η–promoted resistance to the anticancer nucleoside analog cytarabine. Scientific Reports, 2018, 8, 12702.	1.6	11
15	Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. Journal of Biological Chemistry, 2017, 292, 18682-18688.	1.6	32
16	Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-Î ¹ . Scientific Reports, 2017, 7, 43904.	1.6	11
17	Human DNA polymerase α in binary complex with a DNA:DNA template-primer. Scientific Reports, 2016, 6, 23784.	1.6	36
18	Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Science Advances, 2016, 2, e1601317.	4.7	65

#	Article	IF	CITATIONS
19	Response to Burgers etÂal Molecular Cell, 2016, 61, 494-495.	4.5	7
20	Genetic Control of Replication through N1-methyladenine in Human Cells. Journal of Biological Chemistry, 2015, 290, 29794-29800.	1.6	22
21	A Major Role of DNA Polymerase $\hat{\Gamma}$ in Replication of Both the Leading and Lagging DNA Strands. Molecular Cell, 2015, 59, 163-175.	4.5	170
22	Rev1 promotes replication through UV lesions in conjunction with DNA polymerases Ε, Î1, and κ but not DNA polymerase ζ. Genes and Development, 2015, 29, 2588-2602.	2.7	34
23	Crystal Structure of Yeast DNA Polymerase ε Catalytic Domain. PLoS ONE, 2014, 9, e94835.	1.1	42
24	A Role for DNA Polymerase Î, in Promoting Replication through Oxidative DNA Lesion, Thymine Glycol, in Human Cells. Journal of Biological Chemistry, 2014, 289, 13177-13185.	1.6	53
25	Identification of two functional <scp>PCNA</scp> â€binding domains in human <scp>DNA</scp> polymerase κ. Genes To Cells, 2014, 19, 594-601.	0.5	16
26	An Iron–Sulfur Cluster in the Polymerase Domain of Yeast DNA Polymerase ε. Journal of Molecular Biology, 2014, 426, 301-308.	2.0	41
27	The architecture of yeast DNA polymerase zeta (927.2). FASEB Journal, 2014, 28, 927.2.	0.2	0
28	The Architecture of Yeast DNA Polymerase ζ. Cell Reports, 2013, 5, 79-86.	2.9	31
29	Pol31 and Pol32 subunits of yeast DNA polymerase l̂´are also essential subunits of DNA polymerase l̂¶. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12455-12460.	3.3	159
30	Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7799-7804.	3.3	29
31	Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells. MBio, 2012, 3, e00271-12.	1.8	8
32	Human DNA Polymerase η Is Pre-Aligned for dNTP Binding and Catalysis. Journal of Molecular Biology, 2012, 415, 627-634.	2.0	37
33	Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nature Structural and Molecular Biology, 2012, 19, 628-632.	3.6	72
34	DNA Synthesis across an Abasic Lesion by Yeast Rev1 DNA Polymerase. Journal of Molecular Biology, 2011, 406, 18-28.	2.0	35
35	Role of Human DNA Polymerase Î⁰ in Extension Opposite from a cis–syn Thymine Dimer. Journal of Molecular Biology, 2011, 408, 252-261.	2.0	22
36	Requirement of Replication Checkpoint Protein Kinases Mec1/Rad53 for Postreplication Repair in Yeast. MBio, 2011, 2, e00079-11.	1.8	16

#	Article	IF	CITATIONS
37	PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17927-17932.	3.3	69
38	Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases κ and ζ in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14116-14121.	3.3	64
39	Structural Basis for Error-free Replication of Oxidatively Damaged DNA by Yeast DNA Polymerase Ε. Structure, 2010, 18, 1463-1470.	1.6	29
40	Structural basis for the suppression of skin cancers by DNA polymerase Î. Nature, 2010, 465, 1039-1043.	13.7	136
41	DNA polymerase lacking the ubiquitin-binding domain promotes replicative lesion bypass in humans cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10401-10405.	3.3	38
42	Error-free replicative bypass of (6–4) photoproducts by DNA polymerase ζ in mouse and human cells. Genes and Development, 2010, 24, 123-128.	2.7	70
43	Pre-Steady State Kinetic Studies of the Fidelity of Nucleotide Incorporation by Yeast DNA Polymerase δ. Biochemistry, 2010, 49, 7344-7350.	1.2	31
44	Reply to Sabbioneda et al.: Role of ubiquitin-binding motif of human DNA polymerase η in translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .	3.3	4
45	Yeast Rev1 protein promotes complex formation of DNA polymerase ζ with Pol32 subunit of DNA polymerase Î′. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9631-9636.	3.3	54
46	Highly error-free role of DNA polymerase η in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18219-18224.	3.3	135
47	Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes and Development, 2009, 23, 1438-1449.	2.7	46
48	DNA Synthesis across an Abasic Lesion by Human DNA Polymerase \hat{l}^1 . Structure, 2009, 17, 530-537.	1.6	32
49	Replication across Template T/U by Human DNA Polymerase-ι. Structure, 2009, 17, 974-980.	1.6	20
50	Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nature Structural and Molecular Biology, 2009, 16, 979-986.	3.6	236
51	Structure of the Human Rev1–DNA–dNTP Ternary Complex. Journal of Molecular Biology, 2009, 390, 699-709.	2.0	67
52	Structural Insights into Yeast DNA Polymerase δ by Small Angle X-ray Scattering. Journal of Molecular Biology, 2009, 394, 377-382.	2.0	38
53	Structure of Human DNA Polymerase $\hat{I}^{\rm e}$ Inserting dATP Opposite an 8-OxoG DNA Lesion. PLoS ONE, 2009, 4, e5766.	1.1	53
54	Protein-Template-Directed Synthesis across an Acrolein-Derived DNA Adduct by Yeast Rev1 DNA Polymerase. Structure, 2008, 16, 239-245.	1.6	59

#	Article	IF	CITATIONS
55	Requirement of Rad5 for DNA Polymerase ζ-Dependent Translesion Synthesis in <i>Saccharomyces cerevisiae</i> . Genetics, 2008, 180, 73-82.	1.2	64
56	Mutational specificity and genetic control of replicative bypass of an abasic site in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1170-1175.	3.3	77
57	Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase η in translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17724-17729.	3.3	106
58	Regulation of polymerase exchange between Polη and Polδ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5361-5366.	3.3	117
59	Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3768-3773.	3.3	201
60	A Role for Yeast and Human Translesion Synthesis DNA Polymerases in Promoting Replication through 3-Methyl Adenine. Molecular and Cellular Biology, 2007, 27, 7198-7205.	1.1	61
61	Complex Formation of Yeast Rev1 with DNA Polymerase $\hat{I}\cdot$ Molecular and Cellular Biology, 2007, 27, 8401-8408.	1.1	47
62	Requirement of Nse1, a Subunit of the Smc5-Smc6 Complex, for Rad52-Dependent Postreplication Repair of UV-Damaged DNA in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2007, 27, 8409-8418.	1.1	29
63	Requirement of <i>RAD52</i> Group Genes for Postreplication Repair of UV-Damaged DNA in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2007, 27, 7758-7764.	1.1	89
64	ELA1 and CUL3 Are Required Along with ELC1 for RNA Polymerase II Polyubiquitylation and Degradation in DNA-Damaged Yeast Cells. Molecular and Cellular Biology, 2007, 27, 3211-3216.	1.1	68
65	Human DNA Polymerase κ Encircles DNA: Implications for Mismatch Extension and Lesion Bypass. Molecular Cell, 2007, 25, 601-614.	4.5	214
66	Yeast Rad5 Protein Required for Postreplication Repair Has a DNA Helicase Activity Specific for Replication Fork Regression. Molecular Cell, 2007, 28, 167-175.	4.5	252
67	Pre-Steady-State Kinetic Studies of Protein-Template-Directed Nucleotide Incorporation by the Yeast Rev1 Protein. Biochemistry, 2007, 46, 13451-13459.	1.2	19
68	Mutations in the Ubiquitin Binding UBZ Motif of DNA Polymerase η Do Not Impair Its Function in Translesion Synthesis during Replication. Molecular and Cellular Biology, 2007, 27, 7266-7272.	1.1	49
69	Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase Î ¹ . Nature Structural and Molecular Biology, 2006, 13, 619-625.	3.6	105
70	An Incoming Nucleotide Imposes an anti to syn Conformational Change on the Templating Purine in the Human DNA Polymerase-Î ¹ Active Site. Structure, 2006, 14, 749-755.	1.6	60
71	Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18107-18112.	3.3	204
72	Role of Hoogsteen Edge Hydrogen Bonding at Template Purines in Nucleotide Incorporation by Human DNA Polymerase Î ¹ . Molecular and Cellular Biology, 2006, 26, 6435-6441.	1.1	33

#	Article	IF	CITATIONS
73	Complex Formation with Damage Recognition Protein Rad14 Is Essential for Saccharomyces cerevisiae Rad1-Rad10 Nuclease To Perform Its Function in Nucleotide Excision Repair In Vivo. Molecular and Cellular Biology, 2006, 26, 1135-1141.	1.1	49
74	Yeast and Human Translesion DNA Synthesis Polymerases: Expression, Purification, and Biochemical Characterization. Methods in Enzymology, 2006, 408, 390-407.	0.4	48
75	Mms2-Ubc13-Dependent and -Independent Roles of Rad5 Ubiquitin Ligase in Postreplication Repair and Translesion DNA Synthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 7783-7790.	1.1	100
76	Requirement of ELC1 for RNA Polymerase II Polyubiquitylation and Degradation in Response to DNA Damage in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 3999-4005.	1.1	50
77	Human DNA polymerase forms nonproductive complexes with matched primer termini but not with mismatched primer termini. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15776-15781.	3.3	38
78	Complex Formation with Rev1 Enhances the Proficiency of Saccharomyces cerevisiae DNA Polymerase ζ for Mismatch Extension and for Extension Opposite from DNA Lesions. Molecular and Cellular Biology, 2006, 26, 9555-9563.	1.1	114
79	Replication past a trans -4-Hydroxynonenal Minor-Groove Adduct by the Sequential Action of Human DNA Polymerases Î ¹ and κ. Molecular and Cellular Biology, 2006, 26, 381-386.	1.1	51
80	Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6477-6482.	3.3	124
81	EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Annual Review of Biochemistry, 2005, 74, 317-353.	5.0	919
82	Hoogsteen base-pairing in DNA replication? (reply). Nature, 2005, 437, E7-E7.	13.7	4
83	Human DNA Polymerase Î ¹ Incorporates dCTP Opposite Template G via a G.C+ Hoogsteen Base Pair. Structure, 2005, 13, 1569-1577.	1.6	120
84	Human DNA Polymerase \hat{l}^1 Promotes Replication through a Ring-Closed Minor-Groove Adduct That Adopts a syn Conformation in DNA. Molecular and Cellular Biology, 2005, 25, 8748-8754.	1.1	43
85	A Single Domain in Human DNA Polymerase Î ¹ Mediates Interaction with PCNA: Implications for Translesion DNA Synthesis. Molecular and Cellular Biology, 2005, 25, 1183-1190.	1.1	55
86	Evidence for a Watson-Crick Hydrogen Bonding Requirement in DNA Synthesis by Human DNA Polymerase lº. Molecular and Cellular Biology, 2005, 25, 7137-7143.	1.1	53
87	Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase Â. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12359-12364.	3.3	30
88	Complex Formation of Yeast Rev1 and Rev7 Proteins: a Novel Role for the Polymerase-Associated Domain. Molecular and Cellular Biology, 2005, 25, 9734-9740.	1.1	77
89	Trf4 and Trf5 Proteins of Saccharomyces cerevisiae Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity. Molecular and Cellular Biology, 2005, 25, 10183-10189.	1.1	51
90	Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase Â. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10466-10471.	3.3	75

SATYA PRAKASH

#	Article	IF	CITATIONS
91	Rev1 Employs a Novel Mechanism of DNA Synthesis Using a Protein Template. Science, 2005, 309, 2219-2222.	6.0	224
92	Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species. Genes and Development, 2004, 18, 2283-2291.	2.7	48
93	Human DNA Polymerase ι Utilizes Different Nucleotide Incorporation Mechanisms Dependent upon the Template Base. Molecular and Cellular Biology, 2004, 24, 936-943.	1.1	57
94	Efficient and Error-Free Replication past a Minor-Groove N 2 -Guanine Adduct by the Sequential Action of Yeast Rev1 and DNA Polymerase I¶. Molecular and Cellular Biology, 2004, 24, 6900-6906.	1.1	99
95	Efficient and Error-Free Replication Past a Minor-Groove DNA Adduct by the Sequential Action of Human DNA Polymerases I1 and I°. Molecular and Cellular Biology, 2004, 24, 5687-5693.	1.1	114
96	Opposing Effects of Ubiquitin Conjugation and SUMO Modification of PCNA on Replicational Bypass of DNA Lesions in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 4267-4274.	1.1	189
97	Dpo4 is hindered in extending a G·T mismatch by a reverse wobble. Nature Structural and Molecular Biology, 2004, 11, 457-462.	3.6	68
98	Replication by human DNA polymerase- \hat{l}^1 occurs by Hoogsteen base-pairing. Nature, 2004, 430, 377-380.	13.7	300
99	Crystal Structure of the Catalytic Core of Human DNA Polymerase Kappa. Structure, 2004, 12, 1395-1404.	1.6	107
100	Translesion Synthesis past Acrolein-derived DNA Adduct, γ-Hydroxypropanodeoxyguanosine, by Yeast and Human DNA Polymerase Ε. Journal of Biological Chemistry, 2003, 278, 784-790.	1.6	78
101	Deoxynucleotide Triphosphate Binding Mode Conserved in Y Family DNA Polymerases. Molecular and Cellular Biology, 2003, 23, 3008-3012.	1.1	24
102	Yeast DNA Polymerase ζ Is an Efficient Extender of Primer Ends Opposite from 7,8-Dihydro-8-Oxoguanine and O 6 -Methylguanine. Molecular and Cellular Biology, 2003, 23, 1453-1459.	1.1	105
103	Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase Â. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12093-12098.	3.3	78
104	A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes and Development, 2003, 17, 2777-2785.	2.7	40
105	Yeast DNA polymerase makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5113-5118.	3.3	38
106	The Mechanism of Nucleotide Incorporation by Human DNA Polymerase η Differs from That of the Yeast Enzyme. Molecular and Cellular Biology, 2003, 23, 8316-8322.	1.1	43
107	Requirement of Watson-Crick Hydrogen Bonding for DNA Synthesis by Yeast DNA Polymerase Î. Molecular and Cellular Biology, 2003, 23, 5107-5112.	1.1	83
108	Yeast DNA polymerase zeta (zeta) is essential for error-free replication past thymine glycol. Genes and Development, 2003, 17, 77-87.	2.7	92

#	Article	IF	CITATIONS
109	The Stalling of Transcription at Abasic Sites Is Highly Mutagenic. Molecular and Cellular Biology, 2003, 23, 382-388.	1.1	97
110	Human DNA polymerase uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. Genes and Development, 2003, 17, 2191-2199.	2.7	40
111	Yeast RAD26 , a Homolog of the Human CSB Gene, Functions Independently of Nucleotide Excision Repair and Base Excision Repair in Promoting Transcription through Damaged Bases. Molecular and Cellular Biology, 2002, 22, 4383-4389.	1.1	46
112	Role of human DNA polymerase as an extender in translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16000-16005.	3.3	153
113	Yeast Rev1 Protein Is a G Template-specific DNA Polymerase. Journal of Biological Chemistry, 2002, 277, 15546-15551.	1.6	144
114	Stimulation of 3′→5′ Exonuclease and 3′-Phosphodiesterase Activities of Yeast Apn2 by Proliferating Cel Nuclear Antigen. Molecular and Cellular Biology, 2002, 22, 6480-6486.	 1.1	57
115	Human DINB1-encoded DNA polymerase is a promiscuous extender of mispaired primer termini. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1910-1914.	3.3	157
116	Requirement of RAD5 and MMS2 for Postreplication Repair of UV-Damaged DNA in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2002, 22, 2419-2426.	1.1	164
117	Stimulation of DNA Synthesis Activity of Human DNA Polymerase κ by PCNA. Molecular and Cellular Biology, 2002, 22, 784-791.	1.1	171
118	Translesion DNA synthesis in eukaryotes: A one- or two-polymerase affair. Genes and Development, 2002, 16, 1872-1883.	2.7	296
119	Requirement of Yeast RAD2, a Homolog of Human XPG Gene, for Efficient RNA Polymerase II Transcription. Cell, 2002, 109, 823-834.	13.5	94
120	Interaction with PCNA Is Essential for Yeast DNA Polymerase Ε Function. Molecular Cell, 2001, 8, 407-415.	4.5	199
121	The Y-Family of DNA Polymerases. Molecular Cell, 2001, 8, 7-8.	4.5	798
122	Structure of the Catalytic Core of S. cerevisiae DNA Polymerase Î. Molecular Cell, 2001, 8, 417-426.	4.5	347
123	Yeast DNA Polymerase η Utilizes an Induced-Fit Mechanism of Nucleotide Incorporation. Cell, 2001, 107, 917-927.	13.5	126
124	Translesion DNA Synthesis by Yeast DNA Polymerase \hat{I} on Templates Containing N 2-Guanine Adducts of 1,3-Butadiene Metabolites. Journal of Biological Chemistry, 2001, 276, 2517-2522.	1.6	35
125	Requirement of DNA Polymerase η for Error-Free Bypass of UV-Induced CC and TC Photoproducts. Molecular and Cellular Biology, 2001, 21, 185-188.	1.1	129
126	Role of DNA Polymerase $\hat{I}\cdot$ in the Bypass of a (6-4) TT Photoproduct. Molecular and Cellular Biology, 2001, 21, 3558-3563.	1.1	190

#	Article	IF	CITATIONS
127	Physical and Functional Interactions of Human DNA Polymerase η with PCNA. Molecular and Cellular Biology, 2001, 21, 7199-7206.	1.1	231
128	Requirement for Yeast RAD26 , a Homolog of the Human CSB Gene, in Elongation by RNA Polymerase II. Molecular and Cellular Biology, 2001, 21, 8651-8656.	1.1	63
129	Mismatch Extension Ability of Yeast and Human DNA Polymerase Î. Journal of Biological Chemistry, 2001, 276, 2263-2266.	1.6	51
130	Inefficient Bypass of an Abasic Site by DNA Polymerase Ε. Journal of Biological Chemistry, 2001, 276, 6861-6866.	1.6	105
131	Acidic Residues Critical for the Activity and Biological Function of Yeast DNA Polymerase η. Molecular and Cellular Biology, 2001, 21, 2018-2025.	1.1	44
132	Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature. Journal of Biological Chemistry, 2001, 276, 43487-43490.	1.6	307
133	3′-Phosphodiesterase and 3′→5′ Exonuclease Activities of Yeast Apn2 Protein and Requirement of These Activities for Repair of Oxidative DNA Damage. Molecular and Cellular Biology, 2001, 21, 1656-1661.	1.1	66
134	Fidelity and Damage Bypass Ability of Schizosaccharomyces pombe Eso1 Protein, Comprised of DNA Polymerase η and Sister Chromatid Cohesion Protein Ctf7. Journal of Biological Chemistry, 2001, 276, 42857-42862.	1.6	24
135	Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes and Development, 2001, 15, 945-954.	2.7	313
136	Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase Ε. Nature Genetics, 2000, 25, 458-461.	9.4	342
137	Eukaryotic polymerases \hat{I}^1 and $\hat{I}\P$ act sequentially to bypass DNA lesions. Nature, 2000, 406, 1015-1019.	13.7	622
138	Nucleotide excision repair in yeast. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 13-24.	0.4	318
139	Evidence for the Involvement of Nucleotide Excision Repair in the Removal of Abasic Sites in Yeast. Molecular and Cellular Biology, 2000, 20, 3522-3528.	1.1	78
140	Fidelity of Human DNA Polymerase Î. Journal of Biological Chemistry, 2000, 275, 7447-7450.	1.6	365
141	Replication past O 6 -Methylguanine by Yeast and Human DNA Polymerase $\hat{\mathbf{l}}\cdot$ Molecular and Cellular Biology, 2000, 20, 8001-8007.	1.1	137
142	Apurinic Endonuclease Activity of Yeast Apn2 Protein. Journal of Biological Chemistry, 2000, 275, 22427-22434.	1.6	70
143	Evidence for the Involvement of Nucleotide Excision Repair in the Removal of Abasic Sites in Yeast. Molecular and Cellular Biology, 2000, 20, 3522-3528.	1.1	7
144	Replication pastO6-Methylguanine by Yeast and Human DNA Polymerase Ε. Molecular and Cellular Biology, 2000, 20, 8001-8007.	1.1	8

#	Article	IF	CITATIONS
145	Fidelity and Processivity of Saccharomyces cerevisiae DNA Polymerase Î. Journal of Biological Chemistry, 1999, 274, 36835-36838.	1.6	169
146	Synergistic Interaction between Yeast Nucleotide Excision Repair Factors NEF2 and NEF4 in the Binding of Ultraviolet-damaged DNA. Journal of Biological Chemistry, 1999, 274, 24257-24262.	1.6	24
147	Requirement of DNA Polymerase Activity of Yeast Rad30 Protein for Its Biological Function. Journal of Biological Chemistry, 1999, 274, 15975-15977.	1.6	106
148	hRAD30 Mutations in the Variant Form of Xeroderma Pigmentosum. Science, 1999, 285, 263-265.	6.0	712
149	Requirement of Yeast SGS1 and SRS2 Genes for Replication and Transcription. Science, 1999, 286, 2339-2342.	6.0	141
150	Affinity of Yeast Nucleotide Excision Repair Factor 2, Consisting of the Rad4 and Rad23 Proteins, for Ultraviolet Damaged DNA. Journal of Biological Chemistry, 1998, 273, 31541-31546.	1.6	107
151	ATP-dependent Assembly of a Ternary Complex Consisting of a DNA Mismatch and the Yeast MSH2-MSH6 and MLH1-PMS1 Protein Complexes. Journal of Biological Chemistry, 1998, 273, 9837-9841.	1.6	115
152	The DNA-dependent ATPase Activity of Yeast Nucleotide Excision Repair Factor 4 and Its Role in DNA Damage Recognition. Journal of Biological Chemistry, 1998, 273, 6292-6296.	1.6	52
153	Crystal Structure of the Saccharomyces cerevisiae Ubiquitin-conjugating Enzyme Rad6 at 2.6 Ã Resolution. Journal of Biological Chemistry, 1998, 273, 6271-6276.	1.6	70
154	Requirement of Yeast DNA Polymerase δ in Post-replicational Repair of UV-damaged DNA. Journal of Biological Chemistry, 1997, 272, 25445-25448.	1.6	44
155	Yeast DNA Repair Proteins Rad6 and Rad18 Form a Heterodimer That Has Ubiquitin Conjugating, DNA Binding, and ATP Hydrolytic Activities. Journal of Biological Chemistry, 1997, 272, 23360-23365.	1.6	268
156	Yeast Rad7-Rad16 Complex, Specific for the Nucleotide Excision Repair of the Nontranscribed DNA Strand, Is an ATP-dependent DNA Damage Sensor. Journal of Biological Chemistry, 1997, 272, 21665-21668.	1.6	81
157	Enhancement of MSH2–MSH3-mediated mismatch recognition by the yeast MLH1–PMS1 complex. Current Biology, 1997, 7, 790-793.	1.8	81
158	Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Current Biology, 1996, 6, 1185-1187.	1.8	150
159	An Affinity of Human Replication Protein A for Ultraviolet-damaged DNA. Journal of Biological Chemistry, 1996, 271, 11607-11610.	1.6	104
160	Requirement of the Yeast MSH3 and MSH6 Genes for MSH2-dependent Genomic Stability. Journal of Biological Chemistry, 1996, 271, 7285-7288.	1.6	184
161	Reconstitution of TFIIH and Requirement of Its DNA Helicase Subunits, Rad3 and Rad25, in the Incision Step of Nucleotide Excision Repair. Journal of Biological Chemistry, 1996, 271, 10821-10826.	1.6	61
162	Nucleotide Excision Repair in Yeast Is Mediated by Sequential Assembly of Repair Factors and Not by a Pre-assembled Repairosome. Journal of Biological Chemistry, 1996, 271, 8903-8910.	1.6	87

#	Article	IF	CITATIONS
163	RAD26, the Yeast Homolog of Human Cockayne's Syndrome Group B Gene, Encodes a DNA-dependent ATPase. Journal of Biological Chemistry, 1996, 271, 18314-18317.	1.6	64
164	Evidence for Involvement of Yeast Proliferating Cell Nuclear Antigen in DNA Mismatch Repair. Journal of Biological Chemistry, 1996, 271, 27987-27990.	1.6	197
165	Requirement of Mismatch Repair Genes <i>MSH2</i> and <i>MSH3</i> in the <i>RAD1-RAD10</i> Pathway of Mitotic Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 142, 727-736.	1.2	132
166	Structure-specific Nuclease Activity in Yeast Nucleotide Excision Repair Protein Rad2. Journal of Biological Chemistry, 1995, 270, 30194-30198.	1.6	53
167	Reconstitution of Yeast Nucleotide Excision Repair with Purified Rad Proteins, Replication Protein A, and Transcription Factor TFIIH. Journal of Biological Chemistry, 1995, 270, 12973-12976.	1.6	223
168	Conditional Lethality of Null Mutations in RTH1 That Encodes the Yeast Counterpart of a Mammalian 5′- to 3′-Exonuclease Required for Lagging Strand DNA Synthesis in Reconstituted Systems. Journal of Biological Chemistry, 1995, 270, 4193-4196.	1.6	172
169	Lethality in Yeast of Trichothiodystrophy (TTD) Mutations in the Human Xeroderma Pigmentosum Group D Gene. Journal of Biological Chemistry, 1995, 270, 17660-17663.	1.6	25
170	Yeast DNA Repair Protein RAD23 Promotes Complex Formation between Transcription Factor TFIIH and DNA Damage Recognition Factor RAD14. Journal of Biological Chemistry, 1995, 270, 8385-8388.	1.6	77
171	Human xeroderma pigmentosum group G gene encodes a DNA endonuclease. Nucleic Acids Research, 1994, 22, 3312-3316.	6.5	33
172	DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature, 1994, 367, 91-94.	13.7	150
173	RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription. Nature, 1994, 369, 578-581.	13.7	199
174	Holliday junction cleavage by yeast Rad1 protein. Nature, 1994, 371, 531-534.	13.7	49
175	Human xeroderma pigmentosum group D gene encodes a DMA helicase. Nature, 1993, 365, 852-855.	13.7	304
176	Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature, 1993, 366, 365-368.	13.7	137
177	DNA Repair Genes and Proteins of Saccharomyces Cerevisiae. Annual Review of Genetics, 1993, 27, 33-70.	3.2	298
178	TheSchizosaccharomyces pombe rhp3+gene required for DNA repair and cell viability is functionally interchangeable with theRAD3gene ofSaccharomyces cerevisiae. Nucleic Acids Research, 1992, 20, 2327-2334.	6.5	28
179	YeastRAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature, 1992, 355, 555-558.	13.7	112
180	Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD1O. Nature, 1992, 355, 743-745.	13.7	40

SATYA PRAKASH

#	Article	IF	CITATIONS
181	CONSERVATION OF STRUCTURE AND FUNCTION OF DNA REPAIR GENES BETWEEN YEAST AND HUMAN. , 1992, , 239-244.		0
182	Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. Journal of Molecular Biology, 1991, 221, 745-749.	2.0	57
183	Expression of theSaccharomyces cerevisiaeDNA repair geneRAD6that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Research, 1990, 18, 771-778.	6.5	72
184	Transcript levels of theSaccharomyes cerevisiaeDNA repair geneRAD23increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Nucleic Acids Research, 1990, 18, 4737-4742.	6.5	65
185	Regulated expression of theSaccharomyces cerevisiaeDNA repair gene RAD7 in response to DNA damage and during sporulation. Nucleic Acids Research, 1990, 18, 3281-3285.	6.5	42
186	Interactions of the RAD7 and RAD23 excision repair genes of Saccharomyces cerevisiae with DNA repair genes in different epistasis groups. Current Genetics, 1989, 16, 219-223.	0.8	13
187	Cloning and nucleotide sequence analysis of the Saccharomyces cerevisiaeRAD4 gene required for excision repair of UV-damaged DNA. Gene, 1988, 74, 535-541.	1.0	34
188	Expression of the RAD1 and RAD3 genes of Saccharomyces cerevisiae is not affected by DNA damage or during the cell division cycle. Molecular Genetics and Genomics, 1985, 199, 59-63.	2.4	20
189	The nucleotide sequence of theRAD3gene ofSaccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucleic Acids Research, 1985, 13, 2357-2372.	6.5	96
190	Molecular cloning of the RAD10 gene of Saccharomyces cerevisiae. Gene, 1985, 34, 55-61.	1.0	31
191	DIFFERENT EFFECTS OF RAD GENES OF SACCHAROMYCES CEREVISIAE ON INCISIONS OF INTERSTRAND CROSSLINKS AND MONOADDUCTS IN DNA INDUCED BY PSORALEN PLUS NEAR UV LIGHT TREATMENT. Photochemistry and Photobiology, 1984, 39, 349-352.	1.3	18
192	Isolation and characterization of the RAD2 gene of Saccharomyces cerevisiae. Gene, 1984, 30, 121-128.	1.0	42
193	Molecular cloning and characterization of the RAD1 gene of Saccharomyces cerevisiae. Gene, 1983, 26, 119-126.	1.0	50
194	Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1982, 188, 235-239.	2.4	78
195	Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: Evidence for multiple functions of the RAD6 gene. Molecular Genetics and Genomics, 1981, 184, 410-415.	2.4	82
196	Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Current Genetics, 1981, 4, 223-232.	0.8	5
197	Genetic Analysis of Error-Prone Repair Systems in Saccharomyces cerevisiae. , 1980, 15, 141-158.		17
198	EFFECTS OF THE <i>RAD52</i> GENE ON RECOMBINATION IN <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1980, 94, 31-50.	1.2	257

SATYA PRAKASH

#	Article	IF	CITATIONS
199	VARIATION IN ACTIVITIES OF AMYLASE ALLOZYMES ASSOCIATED WITH CHROMOSOME INVERSIONS IN DROSOPHILA PSEUDOOBSCURA, D. PERSIMILIS AND D. MIRANDA. Genetics, 1980, 95, 187-209.	1.2	17
200	DISTINCTIONS AMONG ALLELIC VARIANTS ASSOCIATED WITH CHROMOSOME 3 INVERSIONS IN DROSOPHILA PSEUDOOBSCURA AND DROSOPHILA PERSIMILIS. Genetics, 1980, 96, 727-741.	1.2	3
201	DEVELOPMENTAL VARIATION IN AMYLASE ALLOZYME ACTIVITY ASSOCIATED WITH CHROMOSOME INVERSIONS IN DROSOPHILA PERSIMILIS. Genetics, 1980, 95, 1001-1011.	1.2	3
202	VARIATION IN BIOCHEMICAL PROPERTIES OF ALLOZYMES OF XANTHINE DEHYDROGENASE IN DROSOPHILA PSEUDOOBSCURA. Genetics, 1980, 96, 927-938.	1.2	4
203	ACTIVITY VARIANTS OF ACID PHOSPHATASE-3 AMONG CHROMOSOME <i>3</i> INVERSIONS OF <i>DROSOPHILA PSEUDOOBSCURA</i> . Genetics, 1980, 96, 743-755.	1.2	2
204	Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1979, 172, 249-258.	2.4	38
205	Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Molecular Genetics and Genomics, 1979, 176, 351-359.	2.4	75
206	GENETIC DIVERGENCE IN CLOSELY RELATED SIBLING SPECIES DROSOPHILA PSEUDOOBSCURA, DROSOPHILA PERSIMILIS AND DROSOPHILA MIRANDA. Evolution; International Journal of Organic Evolution, 1977, 31, 14-23.	1.1	24
207	Genetic Divergence in Closely Related Sibling Species Drosophila pseudoobscura, Drosophila persimilis and Drosophila miranda. Evolution; International Journal of Organic Evolution, 1977, 31, 14.	1.1	11
208	GENE POLYMORPHISM IN NATURAL POPULATIONS OF DROSOPHILA PERSIMILIS. Genetics, 1977, 85, 513-520.	1.2	15
209	A COMPARATIVE STUDY OF THE ESTERASE-5 LOCUS IN DROSOPHILA PSEUDOOBSCURA, D. PERSIMILIS AND D. MIRANDA. Genetics, 1977, 85, 697-711.	1.2	15
210	FURTHER STUDIES ON GENE POLYMORPHISM IN THE MAINBODY AND GEOGRAPHICALLY ISOLATED POPULATIONS OF DROSOPHILA PSEUDOOBSCURA. Genetics, 1977, 85, 713-719.	1.2	21
211	ISOLATION AND CHARACTERIZATION OF MMS-SENSITIVE MUTANTS OF <i>SACCHAROMYCES CEREVISIAE</i> Genetics, 1977, 86, 33-55.	1.2	230
212	ALLELIC VARIANTS AT THE XANTHINE DEHYDROGENASE LOCUS AFFECTING ENZYME ACTIVITY IN DROSOPHILA PSEUDOOBSCURA. Genetics, 1977, 87, 159-168.	1.2	14
213	INCREASED SPONTANEOUS MITOTIC SEGREGATION IN MMS-SENSITIVE MUTANTS OF <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1977, 87, 229-236.	1.2	50
214	AN EXPERIMENTAL INVESTIGATION OF THE UNIT CHARGE MODEL OF PROTEIN POLYMORPHISM AND ITS RELATION TO THE ESTERASE-5 LOCUS OF DROSOPHILA PSEUDOOBSCURA, DROSOPHILA PERSIMILIS, AND DROSOPHILA MIRANDA. Genetics, 1977, 87, 717-742.	1.2	14
215	EXAMINATION OF ALLELIC VARIATION AT THE HEXOKINASE LOCI OF DROSOPHILA PSEUDOOBSCURA AND D. PERSIMILIS BY DIFFERENT METHODS. Genetics, 1977, 87, 743-761.	1.2	27
216	GENE DIFFERENCES BETWEEN THIRD-CHROMOSOME INVERSIONS OF <i>DROSOPHILA PSEUDOOBSCURA</i> . Genetics, 1976, 84, 787-790.	1.2	20

#	Article	IF	CITATIONS
217	ASSOCIATION OF ALLELES OF THE MALIC DEHYDROGENASE LOCUS WITH A PERICENTRIC INVERSION IN DROSOPHILA ROBUSTA. Genetics, 1974, 77, 565-568.	1.2	10
218	GENE DIFFERENCES BETWEEN THE SEX RATIO AND STANDARD GENE ARRANGEMENTS OF THE <i>X</i> CHROMOSOME AND LINKAGE DISEQUILIBRIUM BETWEEN LOCI IN THE STANDARD GENE ARRANGEMENT OF THE <i>X</i> CHROMOSOME IN <i>DROSOPHILA PSEUDOOBSCURA</i> . Genetics, 1974, 77, 795-804.	1.2	35
219	PATTERNS OF GENE VARIATION IN CENTRAL AND MARGINAL POPULATIONS OF <i>DROSOPHILA ROBUSTA</i> . Genetics, 1973, 75, 347-369.	1.2	85
220	ASSOCIATIONS OF ALLELES OF THE ESTERASE-1 LOCUS WITH GENE ARRANGEMENTS OF THE LEFT ARM OF THE SECOND CHROMOSOME IN DROSOPHILA ROBUSTA. Genetics, 1973, 75, 371-379.	1.2	18
221	LOW GENE VARIATION IN <i>DROSOPHILA BUSCKII</i> . Genetics, 1973, 75, 571-576.	1.2	13
222	ORIGIN OF REPRODUCTIVE ISOLATION IN THE ABSENCE OF APPARENT GENIC DIFFERENTIATION IN A GEOGRAPHIC ISOLATE OF <i>DROSOPHILA PSEUDOOBSCURA</i> . Genetics, 1972, 72, 143-155.	1.2	124
223	DIRECT EVIDENCE OF GENIC DIFFERENTIATION BETWEEN SEX RATIO AND STANDARD GENE ARRANGEMENTS OF <i>X</i> CHROMOSOME IN <i>DROSOPHILA PSEUDOOBSCURA</i> . Genetics, 1972, 72, 169-175.	1.2	35
224	GENE VARIATION IN DROSOPHILA POPULATIONS. Taxon, 1971, 20, 55-62.	0.4	1