Takayuki Murata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-L1 upregulation by lytic induction of Epstein-Barr Virus. Virology, 2022, 568, 31-40.	1.1	8
2	In Silico Analysis and Synthesis of Nafamostat Derivatives and Evaluation of Their Anti-SARS-CoV-2 Activity. Viruses, 2022, 14, 389.	1.5	2
3	Rapid Spread in Japan of Unusual G9P[8] Human Rotavirus Strains Possessing NSP4 Genes of E2 Genotype. Japanese Journal of Infectious Diseases, 2022, 75, 466-475.	0.5	6
4	EBV genome variations enhance clinicopathological features of nasopharyngeal carcinoma in a nonâ€endemic region. Cancer Science, 2022, , .	1.7	7
5	Rotavirus incapable of NSP6 expression can cause diarrhea in suckling mice. Journal of General Virology, 2022, 103, .	1.3	2
6	Estrogen induces the expression of <scp>EBV</scp> lytic protein <scp>ZEBRA</scp> , aÂmarker of poor prognosis in nasopharyngeal carcinoma. Cancer Science, 2022, 113, 2862-2877.	1.7	9
7	Epstein–Barr virus tegument protein BGLF2 in exosomes released from virus-producing cells facilitates de novo infection. Cell Communication and Signaling, 2022, 20, .	2.7	9
8	Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein–Protein Interactions Hint Central Role of BLRF2 in the Tegument Network. Journal of Virology, 2022, 96, .	1.5	3
9	Reduction of severe acute respiratory syndrome coronavirusâ€2 infectivity by admissible concentration of ozone gas and water. Microbiology and Immunology, 2021, 65, 10-16.	0.7	23
10	Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission. Infection, Genetics and Evolution, 2021, 87, 104667.	1.0	10
11	The FAT10 Posttranslational Modification Is Involved in Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2021, 95, .	1.5	3
12	Role of Epstein–Barr Virus C Promoter Deletion in Diffuse Large B Cell Lymphoma. Cancers, 2021, 13, 561.	1.7	9
13	Oncolytic activity of naturally attenuated herpes-simplex virus HF10 against an immunocompetent model of oral carcinoma. Molecular Therapy - Oncolytics, 2021, 20, 220-227.	2.0	6
14	Human Herpesvirus and the Immune Checkpoint PD-1/PD-L1 Pathway: Disorders and Strategies for Survival. Microorganisms, 2021, 9, 778.	1.6	8
15	Strategy for generation of replication–competent recombinant rotaviruses expressing multiple foreign genes. Journal of General Virology, 2021, 102, .	1.3	6
16	RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 2021, 557, 44-54.	1.1	18
17	Shedding of Viable Virus in Asymptomatic SARS-CoV-2 Carriers. MSphere, 2021, 6, .	1.3	18
18	Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events. Virus Genes, 2021, 57, 338-357.	0.7	14

#	Article	IF	CITATIONS
19	Deletion of Viral microRNAs in the Oncogenesis of Epstein–Barr Virus-Associated Lymphoma. Frontiers in Microbiology, 2021, 12, 667968.	1.5	12
20	Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis. Viruses, 2021, 13, 1791.	1.5	5
21	Virological and genomic analysis of SARS-CoV-2 from a favipiravir clinical trial cohort. Journal of Infection and Chemotherapy, 2021, 27, 1350-1356.	0.8	1
22	A STING inhibitor suppresses EBVâ€induced B cell transformation and lymphomagenesis. Cancer Science, 2021, 112, 5088-5099.	1.7	7
23	Genomic characterization of an African G4P[6] human rotavirus strain identified in a diarrheic child in Kenya: Evidence for porcine-to-human interspecies transmission and reassortment. Infection, Genetics and Evolution, 2021, 96, 105133.	1.0	10
24	Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses, 2021, 13, 2344.	1.5	70
25	High prevalence of equineâ€like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. Journal of Medical Virology, 2020, 92, 174-186.	2.5	33
26	Oncolytic activity of HF10 in head and neck squamous cell carcinomas. Cancer Gene Therapy, 2020, 27, 585-598.	2.2	16
27	Oncogenesis of CAEBV revealed: Intragenic deletions in the viral genome and leaky expression of lytic genes. Reviews in Medical Virology, 2020, 30, e2095.	3.9	24
28	Generation of recombinant rotaviruses from just 11 cDNAs encoding a viral genome. Virus Research, 2020, 286, 198075.	1.1	6
29	Reverse genetics system for human rotaviruses. Microbiology and Immunology, 2020, 64, 401-406.	0.7	6
30	Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand. PLoS ONE, 2020, 15, e0231099.	1.1	13
31	Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Frontiers in Microbiology, 2020, 11, 575255.	1.5	27
32	Rapid generation of rotavirus single-gene reassortants by means of eleven plasmid-only based reverse genetics. Journal of General Virology, 2020, 101, 806-815.	1.3	9
33	Antitumor activity of cyclinâ€dependent kinase inhibitor alsterpaullone in Epsteinâ€Barr virusâ€associated lymphoproliferative disorders. Cancer Science, 2020, 111, 279-287.	1.7	12
34	Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. PLoS ONE, 2019, 14, e0222519.	1.1	8
35	Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nature Microbiology, 2019, 4, 404-413.	5.9	152
36	The BOLF1 gene is necessary for effective Epstein–Barr viral infectivity. Virology, 2019, 531, 114-125.	1.1	9

#	Article	IF	CITATIONS
37	Characterization of an Unusual DS-1-Like G8P[8] Rotavirus Strain from Japan in 2017: Evolution of Emerging DS-1-Like G8P[8] Strains through Reassortment. Japanese Journal of Infectious Diseases, 2019, 72, 256-260.	0.5	15
38	Initial Characterization of the Epstein–Barr Virus BSRF1 Gene Product. Viruses, 2019, 11, 285.	1.5	14
39	Generation of Infectious Recombinant Human Rotaviruses from Just 11 Cloned cDNAs Encoding the Rotavirus Genome. Journal of Virology, 2019, 93, .	1.5	40
40	S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. Journal of Virology, 2019, 93, .	1.5	21
41	Epstein-Barr Virus BBRF2 Is Required for Maximum Infectivity. Microorganisms, 2019, 7, 705.	1.6	10
42	Genomic characterization of uncommon human G3P[6] rotavirus strains that have emerged in Kenya after rotavirus vaccine introduction, and pre-vaccine human G8P[4] rotavirus strains. Infection, Genetics and Evolution, 2019, 68, 231-248.	1.0	10
43	Generation of Recombinant Rotaviruses Expressing Fluorescent Proteins by Using an Optimized Reverse Genetics System. Journal of Virology, 2018, 92, .	1.5	68
44	BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection. MSphere, 2018, 3, .	1.3	26
45	Regulation of Epstein-Barr Virus Life Cycle and Cell Proliferation by Histone H3K27 Methyltransferase EZH2 in Akata Cells. MSphere, 2018, 3, .	1.3	25
46	Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: Evidence for bovine-to-human zoonotic transmission. Infection, Genetics and Evolution, 2018, 63, 43-57.	1.0	12
47	Encyclopedia of EBV-Encoded Lytic Genes: An Update. Advances in Experimental Medicine and Biology, 2018, 1045, 395-412.	0.8	24
48	The Presence of Defective Epstein-Barr Virus (EBV) Infection in Patients with EBV-Associated Hematological Malignancy. Blood, 2018, 132, 1562-1562.	0.6	0
49	Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production. Journal of Virology, 2017, 91, .	1.5	35
50	The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Scientific Reports, 2017, 7, 6044.	1.6	9
51	The C-Terminus of Epstein-Barr Virus BRRF2 Is Required for its Proper Localization and Efficient Virus Production. Frontiers in Microbiology, 2017, 8, 125.	1.5	7
52	Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter. Frontiers in Microbiology, 2017, 8, 2302.	1.5	3
53	Elimination of LMP1-expressing cells from a monolayer of gastric cancer AGS cells. Oncotarget, 2017, 8, 39345-39355.	0.8	17
54	Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS ONE, 2017, 12, e0175053.	1.1	40

#	Article	IF	CITATIONS
55	The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model. American Journal of Cancer Research, 2017, 7, 1693-1703.	1.4	5
56	Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. Journal of Virology, 2016, 90, 3873-3889.	1.5	14
57	Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Oncotarget, 2016, 7, 76793-76805.	0.8	32
58	A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. Scientific Reports, 2015, 5, 11767.	1.6	10
59	The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Frontiers in Microbiology, 2015, 6, 280.	1.5	17
60	Roles of Epstein-Barr virus BGLF3.5 gene and two upstream open reading frames in lytic viral replication in HEK293 cells. Virology, 2015, 483, 44-53.	1.1	11
61	The Epstein–Barr virus BRRF2 gene product is involved in viral progeny production. Virology, 2015, 484, 33-40.	1.1	13
62	The Epstein-Barr Virus BDLF4 Gene Is Required for Efficient Expression of Viral Late Lytic Genes. Journal of Virology, 2015, 89, 10120-10124.	1.5	24
63	Switching of EBV cycles between latent and lytic states. Reviews in Medical Virology, 2014, 24, 142-153.	3.9	122
64	Regulation of Epstein–Barr virus reactivation from latency. Microbiology and Immunology, 2014, 58, 307-317.	0.7	102
65	Role of latent membrane protein 1 in chronic active Epstein–Barr virus infectionâ€derived T/NKâ€cell proliferation. Cancer Medicine, 2014, 3, 787-795.	1.3	13
66	Anti-CCR4 Monoclonal Antibody Mogamulizumab for the Treatment of EBV-Associated T- and NK-Cell Lymphoproliferative Diseases. Clinical Cancer Research, 2014, 20, 5075-5084.	3.2	29
67	Antiâ€tumor effects of suberoylanilide hydroxamic acid on Epstein–Barr virusâ€associated T cell and natural killer cell lymphoma. Cancer Science, 2014, 105, 713-722.	1.7	15
68	Modes of infection and oncogenesis by the Epstein–Barr virus. Reviews in Medical Virology, 2014, 24, 242-253.	3.9	72
69	Different Distributions of Epstein-Barr Virus Early and Late Gene Transcripts within Viral Replication Compartments. Journal of Virology, 2013, 87, 6693-6699.	1.5	35
70	Epstein-Barr Virus Deubiquitinase Downregulates TRAF6-Mediated NF-κB Signaling during Productive Replication. Journal of Virology, 2013, 87, 4060-4070.	1.5	83
71	Nuclear Transport of Epstein-Barr Virus DNA Polymerase Is Dependent on the BMRF1 Polymerase Processivity Factor and Molecular Chaperone Hsp90. Journal of Virology, 2013, 87, 6482-6491.	1.5	40
72	Interaction between Basic Residues of Epstein-Barr Virus EBNA1 Protein and Cellular Chromatin Mediates Viral Plasmid Maintenance. Journal of Biological Chemistry, 2013, 288, 24189-24199.	1.6	15

#	Article	IF	CITATIONS
73	Pin1 Interacts with the Epstein-Barr Virus DNA Polymerase Catalytic Subunit and Regulates Viral DNA Replication. Journal of Virology, 2013, 87, 2120-2127.	1.5	39
74	Contribution of Myocyte Enhancer Factor 2 Family Transcription Factors to BZLF1 Expression in Epstein-Barr Virus Reactivation from Latency. Journal of Virology, 2013, 87, 10148-10162.	1.5	29
75	Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Frontiers in Genetics, 2013, 4, 53.	1.1	44
76	Heat Shock Protein 90 Inhibitors Repress Latent Membrane Protein 1 (LMP1) Expression and Proliferation of Epstein-Barr Virus-Positive Natural Killer Cell Lymphoma. PLoS ONE, 2013, 8, e63566.	1.1	31
77	Epigenetic Histone Modification of Epstein-Barr Virus BZLF1 Promoter during Latency and Reactivation in Raji Cells. Journal of Virology, 2012, 86, 4752-4761.	1.5	92
78	Unexpected Instability of Family of Repeats (FR), the Critical cis-Acting Sequence Required for EBV Latent Infection, in EBV-BAC Systems. PLoS ONE, 2011, 6, e27758.	1.1	28
79	The Human Cytomegalovirus Gene Products Essential for Late Viral Gene Expression Assemble into Prereplication Complexes before Viral DNA Replication. Journal of Virology, 2011, 85, 6629-6644.	1.5	64
80	Identification and Characterization of CCAAT Enhancer-binding Protein (C/EBP) as a Transcriptional Activator for Epstein-Barr Virus Oncogene Latent Membrane Protein 1. Journal of Biological Chemistry, 2011, 286, 42524-42533.	1.6	20
81	Involvement of Jun Dimerization Protein 2 (JDP2) in the Maintenance of Epstein-Barr Virus Latency. Journal of Biological Chemistry, 2011, 286, 22007-22016.	1.6	25
82	Spatiotemporally Different DNA Repair Systems Participate in Epstein-Barr Virus Genome Maturation. Journal of Virology, 2011, 85, 6127-6135.	1.5	23
83	The Human Cytomegalovirus UL76 Gene Regulates the Level of Expression of the UL77 Gene. PLoS ONE, 2010, 5, e11901.	1.1	13
84	Tetrameric Ring Formation of Epstein-Barr Virus Polymerase Processivity Factor Is Crucial for Viral Replication. Journal of Virology, 2010, 84, 12589-12598.	1.5	15
85	Transcriptional Repression by Sumoylation of Epstein-Barr Virus BZLF1 Protein Correlates with Association of Histone Deacetylase. Journal of Biological Chemistry, 2010, 285, 23925-23935.	1.6	34
86	Transient increases in p53-responsible gene expression at early stages of Epstein-Barr virus productive replication. Cell Cycle, 2010, 9, 807-814.	1.3	27
87	TORC2, a Coactivator of cAMP-response Element-binding Protein, Promotes Epstein-Barr Virus Reactivation from Latency through Interaction with Viral BZLF1 Protein. Journal of Biological Chemistry, 2009, 284, 8033-8041.	1.6	37
88	Phosphorylation of p27Kip1 by Epstein-Barr Virus Protein Kinase Induces Its Degradation through SCFSkp2 Ubiquitin Ligase Actions during Viral Lytic Replication. Journal of Biological Chemistry, 2009, 284, 18923-18931.	1.6	26
89	Homologous Recombinational Repair Factors Are Recruited and Loaded onto the Viral DNA Genome in Epstein-Barr Virus Replication Compartments. Journal of Virology, 2009, 83, 6641-6651.	1.5	74
90	Degradation of Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex. PLoS Pathogens, 2009, 5, e1000530.	2.1	92

ΤΑΚΑΥUKI MURATA

#	Article	IF	CITATIONS
91	Epstein-Barr Virus Polymerase Processivity Factor Enhances BALF2 Promoter Transcription as a Coactivator for the BZLF1 Immediate-Early Protein. Journal of Biological Chemistry, 2009, 284, 21557-21568.	1.6	21
92	Expression of Epstein–Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology, 2009, 388, 204-211.	1.1	48
93	Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase. Virology, 2009, 389, 75-81.	1.1	52
94	Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites. Cellular Signalling, 2008, 20, 1795-1803.	1.7	54
95	A <i>cis</i> Element between the TATA Box and the Transcription Start Site of the Major Immediate-Early Promoter of Human Cytomegalovirus Determines Efficiency of Viral Replication. Journal of Virology, 2008, 82, 849-858.	1.5	32
96	Noncanonical TATA Sequence in the UL44 Late Promoter of Human Cytomegalovirus Is Required for the Accumulation of Late Viral Transcripts. Journal of Virology, 2008, 82, 1638-1646.	1.5	49
97	5′-O-Masked 2′-deoxyadenosine analogues as lead compounds for hepatitis C virus (HCV) therapeutic agents. Bioorganic and Medicinal Chemistry, 2007, 15, 6882-6892.	1.4	10
98	MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F. Science, 2007, 317, 1764-1767.	6.0	458
99	Evaluation of the anti-hepatitis C virus effects of cyclophilin inhibitors, cyclosporin A, and NIM811. Biochemical and Biophysical Research Communications, 2006, 343, 879-884.	1.0	129
100	Effect of Hepatitis C Virus (HCV) NS5B-Nucleolin Interaction on HCV Replication with HCV Subgenomic Replicon. Journal of Virology, 2006, 80, 3332-3340.	1.5	38
101	Ubiquitination and Proteasome-dependent Degradation of Human Eukaryotic Translation Initiation Factor 4E. Journal of Biological Chemistry, 2006, 281, 20788-20800.	1.6	68
102	Suppression of hepatitis C virus replicon by TGF-β. Virology, 2005, 331, 407-417.	1.1	60
103	Enhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059. Virology, 2005, 340, 105-115.	1.1	26
104	Inhibition of hepatitis C virus replication by pol III-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology, 2005, 342, 276-285.	1.1	31
105	Cyclophilin B Is a Functional Regulator of Hepatitis C Virus RNA Polymerase. Molecular Cell, 2005, 19, 111-122.	4.5	413
106	Phosphorylation of Cytokeratin 17 by Herpes Simplex Virus Type 2 US3 Protein Kinase. Microbiology and Immunology, 2002, 46, 707-719.	0.7	20
107	Anti-apoptotic protein kinase of herpes simplex virus. Trends in Microbiology, 2002, 10, 105-107.	3.5	23
108	Herpes simplex virus type 2 US3 blocks apoptosis induced by sorbitol treatment. Microbes and Infection, 2002, 4, 707-712.	1.0	32

#	Article	IF	CITATIONS
109	Excretion of herpes simplex virus type 2 glycoprotein D into the culture medium. Journal of General Virology, 2002, 83, 2791-2795.	1.3	4
110	The US11 Gene Product of Herpes Simplex Virus Has Intercellular Trafficking Activity. Biochemical and Biophysical Research Communications, 2001, 288, 597-602.	1.0	10
111	Herpes simplex virus encodes a virion-associated protein which promotes long cellular processes in over-expressing cells. Genes To Cells, 2001, 6, 955-966.	0.5	57
112	Identification and characterization of the UL24 gene product of herpes simplex virus type 2. Virus Genes, 2001, 22, 321-327.	0.7	21
113	A Single Amino Acid Substitution in the ICP27 Protein of Herpes Simplex Virus Type 1 Is Responsible for Its Resistance to Leptomycin B. Journal of Virology, 2001, 75, 1039-1043.	1.5	19
114	Herpes simplex virus type 2 UL34 protein requires UL31 protein for its relocation to the internal nuclear membrane in transfected cells. Journal of General Virology, 2001, 82, 1423-1428.	1.3	56
115	å•ç´´`ãf~ãf«ãfšã,¹ã,¦ã,Ħf«ã,¹éºä¼åç´`£ç‰©ã®æ©Ÿèf½. Uirusu, 2001, 51, 29-36.	0.1	0
116	Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes To Cells, 2000, 5, 1017-1027.	0.5	60
117	Mitochondrial distribution and function in herpes simplex virus-infected cells. Microbiology (United) Tj ETQq1 1 C).784314 r 0.7	gBT /Overloo
118	Growth behavior of bovine herpesvirus-1 in permissive and semi-permissive cells. Virus Research, 1999, 61, 29-41.	1.1	11
119	Characterization of Promoters Integrated in the Genome of Bovine Herpesvirus-1(BHV-1) Journal of Veterinary Medical Science, 1999, 61, 453-457.	0.3	3
120	Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus. Archives of Virology, 1997, 142, 1003-1010.	0.9	10
121	EBV Exploits RNA m6A Modification to Promote Cell Survival and Progeny Virus Production During Lytic Cycle. Frontiers in Microbiology, 0, 13, .	1.5	11