
Ivan Krakovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10662134/publications.pdf Version: 2024-02-01

IVAN KRAKOVSKY

#	Article	IF	CITATIONS
1	Structure of Plasma (re)Polymerized Polylactic Acid Films Fabricated by Plasma-Assisted Vapour Thermal Deposition. Materials, 2021, 14, 459.	2.9	6
2	Thin films of cross-linked polylactic acid as tailored platforms for controlled drug release. Surface and Coatings Technology, 2021, 421, 127402.	4.8	5
3	SANS and NMR study on nanostructure of thermoresponsive double network hydrogels. European Polymer Journal, 2020, 137, 109929.	5.4	5
4	Poly(N,N′-Diethylacrylamide)-Based Thermoresponsive Hydrogels with Double Network Structure. Polymers, 2020, 12, 2502.	4.5	14
5	Thermoresponsive double network hydrogels composed of poly(N-isopropylacrylamide) and polyacrylamide. European Polymer Journal, 2019, 116, 415-424.	5.4	17
6	Phase mixing and separation in polyester polyurethane studied by small-angle scattering: A polydisperse hard sphere model analysis. Polymer, 2018, 147, 1-7.	3.8	20
7	Microstructure Changes in Polyester Polyurethane upon Thermal and Humid Aging. Polymers, 2016, 8, 197.	4.5	18
8	In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 3954-3962.	2.6	7
9	SANS study on the surfactant effect on nanophase separation in epoxy-based hydrogels prepared from α,ω-diamino terminated polyoxypropylene and polyoxyethylene bis(glycidyl ether). European Polymer Journal, 2016, 85, 452-465.	5.4	1
10	Microphase-Separated PE/PEO Thin Films Prepared by Plasma-Assisted Vapor Phase Deposition. ACS Applied Materials & Interfaces, 2016, 8, 8201-8212.	8.0	13
11	Study on the Microstructure of Polyester Polyurethane Irradiated in Air and Water. Polymers, 2015, 7, 1755-1766.	4.5	21
12	SANS study on influence of temperature on nanophase separation in epoxy-based hydrogels. European Polymer Journal, 2015, 71, 336-351.	5.4	4
13	Epoxy networks and hydrogels prepared from α,ω-diamino terminated poly(oxypropylene)-b-poly(oxyethylene)-b-poly(oxypropylene) and polyoxypropylene bis(glycidyl ether). European Polymer Journal, 2015, 62, 19-30.	5.4	6
14	Epoxy networks and thermosensitive hydrogels prepared from α,ï‰-diamino terminated polyoxypropylene and polyoxyethylene bis(glycidyl ether). European Polymer Journal, 2014, 55, 144-152.	5.4	11
15	Epoxy-Based Hydrogels Investigated by High-Frequency Dielectric Relaxation Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 14122-14128.	2.6	4
16	Structure and properties of epoxy/polyaniline nanocomposites. Journal of Non-Crystalline Solids, 2012, 358, 414-419.	3.1	7
17	SANS and DSC study of water distribution in epoxy-based hydrogels. European Polymer Journal, 2011, 47, 2177-2188.	5.4	16
18	Thermal Portrayal of Phase Separation in Polymers Producing Nanophase Separated Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 115-127.	0.5	0

Ινάν Κρακούσκυ

#	Article	IF	CITATIONS
19	Poly(ethylene oxide)â€like Plasma Polymers Produced by Plasmaâ€Assisted Vacuum Evaporation. Plasma Processes and Polymers, 2010, 7, 445-458.	3.0	56
20	Small-angle neutron scattering study of nanophase separated epoxy hydrogels. Journal of Non-Crystalline Solids, 2010, 356, 368-373.	3.1	10
21	Dependence of nanophase separated structure of epoxy hydrogels on swelling conditions investigated by SANS. European Polymer Journal, 2009, 45, 1385-1390.	5.4	5
22	Physical crosslinking effects in α,ï‰-dihydroxy terminated polybutadienes. Polymer, 2007, 48, 2079-2086.	3.8	8
28	Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS. Polymer, 2006, 47, 218-226.	3.8	26
24	Structure and swelling behaviour of epoxy networks based on α,ω-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene). Polymer, 2005, 46, 109-119.	3.8	15
25	Thermal transitions and structure of epoxy networks based on α, ω-diamino terminated poly(propylene) Tj Science, Part B: Polymer Physics, 2005, 43, 699-708.	ETQq1 1 0.78 2.1	4314 rgBT /(5
26	Thermal transitions in α,ï‰-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene) aqueous solutions and their epoxy networks. Journal of Non-Crystalline Solids, 2005, 351, 1254-1260.	3.1	14
27	, Structure of inhomogeneous polymer networks prepared from telechelic polybutadiene. Polymer, 2002, 43, 4989-4996.	3.8	12
28	Time resolved small angle X-ray scattering of inorganic–organic gel formation kinetics. Journal of Non-Crystalline Solids, 1998, 231, 31-40.	3.1	37
29	Inhomogeneous structure of polyurethane networks based on poly(butadiene)diol: 1. The effect of the poly(butadiene)diol content. Polymer, 1997, 38, 3637-3643.	3.8	43
30	Inhomogeneous structure of polyurethane networks based on poly(butadiene)diol: 2. Time-resolved SAXS study of the microphase separation. Polymer, 1997, 38, 3645-3653.	3.8	38
31	Elastic and swelling behavior of 2-hydroxyethyl methacrylate, diethylene glycol methacrylate, and methacrylic acid copolymers. Journal of Applied Polymer Science, 1997, 64, 2141-2148.	2.6	8
32	Network structure of inorganic/organic hybrid gels. Macromolecular Symposia, 1995, 93, 11-16.	0.7	4
38	Cyclotrimerization of isocyanate groups. I. Catalyzed reactions of phenyl isocyanate. Journal of Applied Polymer Science, 1994, 52, 895-904.	2.6	16
34	Cyclotrimerization of isocyanate groups. II. Catalyzed reactions of phenyl isocyanate in the presence of 1-butanol or butyl-N-phenylurethane. Journal of Applied Polymer Science, 1994, 53, 1435-1446.	2.6	13
35	Structure and elasticity of polyurethane networks based on poly(butadiene) diol, 4,4′-diphenylmethane diisocyanate and poly(oxypropylene) triol. Polymer, 1993, 34, 3437-3445.	3.8	8