Azusa Kondoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066112/publications.pdf

Version: 2024-02-01

79	2,516	29 h-index	47
papers	citations		g-index
113	113	113	1997 citing authors
all docs	does citations	times ranked	

#	Article	IF	CITATIONS
1	Optimized Synthesis, Structural Investigations, Ligand Tuning and Synthetic Evaluation of Silyloxyâ€Based Alkyne Metathesis Catalysts. Chemistry - A European Journal, 2012, 18, 10281-10299.	1.7	187
2	Stereoselective Hydrothiolation of Alkynes Catalyzed by Cesium Base:Â Facile Access to (Z)-1-Alkenyl Sulfides. Journal of Organic Chemistry, 2005, 70, 6468-6473.	1.7	149
3	Catalysis-Based and Protecting-Group-Free Total Syntheses of the Marine Oxylipins Hybridalactone and the Ecklonialactones A, B, and C. Journal of the American Chemical Society, 2011, 133, 13471-13480.	6.6	136
4	Copper-Catalyzed anti-Hydrophosphination Reaction of 1-Alkynylphosphines with Diphenylphosphine Providing (Z)-1,2-Diphosphino-1-alkenes. Journal of the American Chemical Society, 2007, 129, 4099-4104.	6.6	123
5	Increasing the Structural Span of Alkyne Metathesis. Chemistry - A European Journal, 2013, 19, 13047-13058.	1.7	95
6	Palladium-Catalyzedanti-Hydrothiolation of 1-Alkynylphosphines. Organic Letters, 2007, 9, 1383-1385.	2.4	76
7	Construction of Vicinal Quaternary Stereogenic Centers by Enantioselective Direct Mannichâ€Type Reaction Using a Chiral Bis(guanidino)iminophosphorane Catalyst. Angewandte Chemie - International Edition, 2016, 55, 4734-4737.	7.2	73
8	Synthesis of Bulky Phosphines by Rhodium-Catalyzed Formal $[2 + 2 + 2]$ Cycloaddition Reactions of Tethered Diynes with 1-Alkynylphosphine Sulfides. Journal of the American Chemical Society, 2007, 129, 6996-6997.	6.6	69
9	Kinetic Resolution of Racemic Amino Alcohols through Intermolecular Acetalization Catalyzed by a Chiral Brønsted Acid. Journal of the American Chemical Society, 2015, 137, 1048-1051.	6.6	60
10	Intramolecular Cyclization of Alkynyl α-Ketoanilide Utilizing [1,2]-Phospha-Brook Rearrangement Catalyzed by Phosphazene Base. Organic Letters, 2014, 16, 3528-3531.	2.4	57
11	Brønsted Base Catalyzed [2,3]-Wittig/Phospha-Brook Tandem Rearrangement Sequence. Organic Letters, 2013, 15, 4568-4571.	2.4	56
12	Rhodium-catalyzed dehydrogenative borylation of cyclic alkenes. Chemical Communications, 2010, 46, 907.	2.2	55
13	Enantioselective Addition of a 2â€Alkoxycarbonylâ€1,3â€dithiane to Imines Catalyzed by a Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie - International Edition, 2015, 54, 15836-15839.	7.2	54
14	Synthesis of Phenanthrene Derivatives by Intramolecular Cyclization Utilizing the [1,2]â€Phosphaâ€Brook Rearrangement Catalyzed by a Brønsted Base. Chemistry - A European Journal, 2015, 21, 12577-12580.	1.7	49
15	Nucleophilic aromatic substitution reaction of nitroarenes with alkyl- or arylthio groups in dimethyl sulfoxide by means of cesium carbonate. Tetrahedron, 2006, 62, 2357-2360.	1.0	47
16	Generation and Application of Homoenolate Equivalents Utilizing [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2017, 23, 2769-2773.	1.7	43
17	Intermolecular Radical Addition of Alkylthio- and Arylthiodiphenylphosphines to Terminal Alkynes. Organic Letters, 2008, 10, 1155-1157.	2.4	41
18	Chiral BrÃ,nsted acid-catalyzed enantioselective Friedel–Crafts reaction of 2-methoxyfuran with aliphatic ketimines generated in situ. Chemical Science, 2016, 7, 1057-1062.	3.7	39

#	Article	IF	CITATIONS
19	Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under BrÃnsted Base Catalysis: Synthesis of 1,3â€Oxazolidines with Quaternary Stereogenic Center. Angewandte Chemie - International Edition, 2018, 57, 6299-6303.	7.2	39
20	1â€Alkynylphosphines and Their Derivatives as Key Starting Materials in Creating New Phosphines. Chemistry - an Asian Journal, 2010, 5, 398-409.	1.7	38
21	Br $ ilde{A}$,nsted base-catalyzed three-component coupling reaction of \hat{l} ±-ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement. Organic and Biomolecular Chemistry, 2016, 14, 4704-4711.	1.5	38
22	Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives. Chemical Communications, 2016, 52, 12513-12516.	2.2	38
23	Synthesis of Tetrasubstituted Furans through One-Pot Formal [3 + 2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement. Organic Letters, 2020, 22, 2105-2110.	2.4	38
24	Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne–Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid. Journal of the American Chemical Society, 2016, 138, 11038-11043.	6.6	37
25	Enantioselective direct Mannich-type reactions of 2-benzylpyridine N-oxides catalyzed by chiral bis(guanidino)iminophosphorane organosuperbase. Chemical Science, 2018, 9, 4348-4351.	3.7	35
26	Organocatalytic Nucleophilic Substitution Reaction of <i>gem</i> -Difluoroalkenes with Ketene Silyl Acetals. Organic Letters, 2019, 21, 2277-2280.	2.4	34
27	Synthesis of 2-Indolylphosphines by Palladium-Catalyzed Annulation of 1-Alkynylphosphine Sulfides with 2-Iodoanilines. Organic Letters, 2010, 12, 1476-1479.	2.4	33
28	Enantioselective Protonation: Hydrophosphinylation of 1,1â€Vinyl Azaheterocycle <i>N</i> â€Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie - International Edition, 2021, 60, 1417-1422.	7.2	33
29	Palladiumâ€Catalyzed Addition of Silylâ€Substituted Chloroalkynes to Terminal Alkynes. Chemistry - A European Journal, 2010, 16, 10671-10674.	1.7	31
30	Development of Chiral Ureates as Chiral Strong Brønsted Base Catalysts. Journal of the American Chemical Society, 2020, 142, 3724-3728.	6.6	31
31	Total Synthesis of Nominal Gobienine A. Chemistry - A European Journal, 2013, 19, 7731-7738.	1.7	30
32	Ring Expansion of Epoxides under BrÃ,nsted Base Catalysis: Formal [3+2] Cycloaddition of β,γâ€Epoxy Esters with Imines Providing 2,4,5â€Trisubstituted 1,3â€Oxazolidines. Angewandte Chemie - International Edition, 2015, 54, 11240-11244.	7.2	30
33	Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Organic and Biomolecular Chemistry, 2017, 15, 7277-7281.	1.5	27
34	Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2018, 24, 15246-15253.	1.7	27
35	Organocatalytic Arylation of αâ€Ketoesters Based on Umpolung Strategy: Phosphazeneâ€Catalyzed S _N Ar Reaction Utilizing [1,2]â€Phosphaâ€Brook Rearrangement. Chemistry - A European Journal, 2018, 24, 13110-13113.	1.7	26
36	Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie - International Edition, 2020, 59, 7472-7477.	7.2	26

#	Article	IF	Citations
37	Regio- and Stereoselective Additions of Diphenyldithiophosphinic Acid to <i>N</i> -(1-Alkynyl)amides and 1-Alkynyl Sulfides. Bulletin of the Chemical Society of Japan, 2008, 81, 506-514.	2.0	25
38	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie - International Edition, 2018, 57, 13917-13921.	7.2	24
39	Br $\tilde{A}_{,n}$ nsted Base-Catalyzed Transformation of $\hat{l}\pm,\hat{l}^2$ -Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety. Organic Letters, 2020, 22, 5170-5175.	2.4	24
40	Phosphazene-catalyzed intramolecular cyclization of nitrogen-tethered alkynyl esters. Chemical Communications, 2013, 49, 10254.	2.2	23
41	Chiral Brønsted acid-catalyzed intramolecular S _N 2′ reaction for enantioselective construction of a quaternary stereogenic center. Chemical Science, 2018, 9, 5747-5757.	3.7	23
42	Palladiumâ€Catalyzed Alkynylthiolation of Alkynes with Triisopropylsilylethynyl Sulfide. Chemistry - an Asian Journal, 2011, 6, 3190-3194.	1.7	21
43	Br $ ilde{A}_i$ nsted base-catalyzed \hat{l} ±-oxygenation of carbonyl compounds utilizing the [1,2]-phospha-Brook rearrangement. Organic Chemistry Frontiers, 2015, 2, 801-805.	2.3	21
44	Construction of Vicinal Quaternary Stereogenic Centers by Enantioselective Direct Mannichâ€√ype Reaction Using a Chiral Bis(guanidino)iminophosphorane Catalyst. Angewandte Chemie, 2016, 128, 4812-4815.	1.6	21
45	Enantioselective intramolecular cyclization of alkynyl esters catalyzed by a chiral BrĄ̃,nsted base. Chemical Communications, 2016, 52, 5726-5729.	2.2	21
46	Brønsted Baseâ€Catalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines. Chemistry - A European Journal, 2018, 24, 3998-4001.	1.7	21
47	Regio- and Stereoselective Hydroamidation of 1-Alkynylphosphine Sulfides Catalyzed by Cesium Base. Organic Letters, 2008, 10, 3093-3095.	2.4	20
48	Carbocupration of 1-Alkynylphosphines Followed by Trapping with Electrophiles. Organic Letters, 2007, 9, 2031-2033.	2.4	19
49	Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-Iminoesters through Auto-Tandem Catalysis. Organic Letters, 2018, 20, 5309-5313.	2.4	19
50	Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. Bulletin of the Chemical Society of Japan, 2021, 94, 339-356.	2.0	18
51	Synthesis of Enantioenriched \hat{I}^3 -Amino- \hat{I}^2 -unsaturated Esters Utilizing Palladium-Catalyzed Rearrangement of Allylic Carbamates for Direct Application to Formal $[3+2]$ Cycloaddition. Organic Letters, 2017, 19, 1682-1685.	2.4	17
52	Synthesis of Bulky Arylphosphanes by Rhodiumâ€Catalyzed Formal [2+2+2] Cycloaddition Reaction and Their Use as Ligands. Chemistry - an Asian Journal, 2008, 3, 1613-1619.	1.7	15
53	Formal Fluorinative Ring Opening of 2-Benzoylpyrrolidines Utilizing [1,2]-Phospha-Brook Rearrangement for Synthesis of 2-Aryl-3-fluoropiperidines. Organic Letters, 2021, 23, 7894-7899.	2.4	15
54	Novel Methodology for the Efficient Synthesis of 3-Aryloxindoles: [1,2]-Phospha-Brook Rearrangement–Palladium-Catalyzed Cross-Coupling Sequence. Synlett, 2016, 27, 1848-1853.	1.0	12

#	Article	IF	CITATIONS
55	Enantioselective Protonation: Hydrophosphinylation of 1,1â€Vinyl Azaheterocycle <i>N</i> à€Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angewandte Chemie, 2021, 133, 1437-1442.	1.6	12
56	Synthesis of Indolizine Derivatives Utilizing $[1,2]$ -Phospha-Brook Rearrangement/Cycloisomerization Sequence. Chemistry Letters, 2017, 46, 1020-1023.	0.7	11
57	Rhodium-Catalyzed Reaction of 1-Alkynylphosphines with Water Yielding (<i>E</i>)-1-Alkenylphosphine Oxides. Bulletin of the Chemical Society of Japan, 2008, 81, 502-505.	2.0	10
58	Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under $Br\tilde{A}_{i}$ nsted Base Catalysis: Synthesis of 1,3-Oxazolidines with Quaternary Stereogenic Center. Angewandte Chemie, 2018, 130, 6407-6411.	1.6	10
59	Design and Synthesis of Helically Chiral Spirocyclic P3 Phosphazenes and Characterization of Their Onium Salts. Synlett, 2013, 24, 2531-2534.	1.0	9
60	Enantioselective hydrophosphinylation of 1-alkenylphosphine oxides catalyzed by chiral strong BrÃ,nsted base. Organic and Biomolecular Chemistry, 2020, 18, 7814-7817.	1.5	9
61	Synthesis of diarylalkanes through an intramolecular/intermolecular addition sequence by auto-tandem catalysis with strong BrĄ̃nsted base. Chemical Communications, 2020, 56, 10894-10897.	2.2	8
62	Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie, 2020, 132, 7542-7547.	1.6	8
63	BrÃnsted Baseâ€Catalyzed Formal Reductive [3+2] Annulation of 4,4,4â€Trifluorocrotonate and αâ€lminoketones. Chemistry - A European Journal, 2021, 27, 585-588.	1.7	8
64	A New Approach to 4-Aryl-1,3-butanediols by Cobalt-Catalyzed Sequential Radical Cyclization-Arylation Reaction of Silicon-Tethered 6-lodo-1-hexene Derivatives. Synlett, 2006, 2006, 3061-3064.	1.0	7
65	Radical Addition of Polyhaloalkanes to 2-Ethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. Bulletin of the Chemical Society of Japan, 2009, 82, 1433-1435.	2.0	6
66	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie, 2018, 130, 14113-14117.	1.6	6
67	Formal Umpolung Addition of Phosphites to 2â€Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]â€Phosphaâ€Brook Rearrangement. Chemistry - A European Journal, 2022, 28, .	1.7	6
68	Synthesis of Trisubstituted Allenamides Utilizing 1,2-Rearrangement of Dialkoxyphosphoryl Moiety under $\text{Br}\tilde{A}_{i}$ nsted Base Catalysis. Chemistry Letters, 2019, 48, 1164-1167.	0.7	5
69	Synthesis of 2,2â€Disubstituted 2 <i>H</i> â€Chromenes through Carbonâ€Carbon Bond Formation Utilizing a [1,2]â€Phosphaâ€Brook Rearrangement under Brønsted Base Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	5
70	Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Aryl Sulfides and Alkenyl Alkyl Sulfides with Alkyl Grignard Reagents Using $(Z)-3,3$ -Dimethyl-1,2-bis(diphenylphosphino)but-1-ene as Ligand. Synthesis, 2008, 2008, 2659-2664.	1.2	4
71	BrÃ, nsted Base-Catalyzed Conjugate Addition of \hat{l}^2 -Acylvinyl Anion Equivalents to \hat{l}^2 -Unsaturated Ketones. Synlett, 0, 0, .	1.0	4
72	Novel Transformations Utilizing [1,2]-Phospha-Brook Rearrangement Under BrÃ,nsted Base Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 151-163.	0.0	1

#	Article	IF	Citations
73	Applications of Axially Chiral Organocatalysts. , 2019, , 99-147.		1
74	BrÃ, nsted base-catalyzed 1,2-addition/[1,2]-phospha-Brook rearrangement sequence providing functionalized phosphonates. Organic and Biomolecular Chemistry, 2022, 20, 2863-2866.	1.5	1
75	Stereoselective Hydrothiolation of Alkynes Catalyzed by Cesium Base: Facile Access to (Z)-1-Alkenyl Sulfides ChemInform, 2005, 36, no.	0.1	O
76	Palladium-Catalyzed 1,1-Difunctionalization of Terminal Alkenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1160-1161.	0.0	0
77	Synthesis of Intermediary P3 Phosphazenium Framework and Its Derivatization to Chiral Cationic Macrocycles Including Two P3 Phosphazenium Units with Hydrogen Bond Donor Sites. Heterocycles, 2015, 90, 1396.	0.4	O
78	Frontispiz: Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie, 2020, 132, .	1.6	0
79	Frontispiece: Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0