Maksim Ionov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Scientific Reports, 2022, 12, 1095.	1.6	5
2	Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. International Journal of Pharmaceutics, 2022, 614, 121468.	2.6	8
3	Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 2021, 324, 114726.	2.3	15
4	Combined therapy of ruthenium dendrimers and anti-cancer drugs against human leukemic cells. Dalton Transactions, 2021, 50, 9500-9511.	1.6	8
5	Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, 331, 48-52.	1.9	3
6	Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34. International Journal of Molecular Sciences, 2021, 22, 6271.	1.8	7
7	Tyrosine-modified linear PEIs for highly efficacious and biocompatible siRNA delivery in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102403.	1.7	16
8	Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Scientific Reports, 2021, 11, 16810.	1.6	3
9	Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. Journal of Inorganic Biochemistry, 2021, 223, 111540.	1.5	16
10	Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation. Langmuir, 2021, 37, 1542-1550.	1.6	10
11	Nanoparticles for local delivery of siRNA in lung therapy. Advanced Drug Delivery Reviews, 2021, 179, 114038.	6.6	23
12	Blood Compatibility of Amphiphilic Phosphorous Dendrons—Prospective Drug Nanocarriers. Biomedicines, 2021, 9, 1672.	1.4	4
13	Protein kinases as therapeutic targets to develop anticancer drugs with natural alkaloids. Frontiers in Bioscience, 2021, 26, 1349.	0.8	1
14	Comparison of cationic liposome and PAMAM dendrimer for delivery of anti-Plk1 siRNA in breast cancer treatment. Pharmaceutical Development and Technology, 2020, 25, 9-19.	1.1	15
15	Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics, 2020, 12, 727.	2.0	17
16	Bioactive Compounds and Antiradical Activity of the Rosa canina L. Leaf and Twig Extracts. Agronomy, 2020, 10, 1897.	1.3	12
17	Heterofunctional ruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. European Journal of Medicinal Chemistry, 2020, 207, 112695.	2.6	7
18	Ruthenium Dendrimers against Human Lymphoblastic Leukemia 1301 Cells. International Journal of Molecular Sciences, 2020, 21, 4119.	1.8	20

#	Article	IF	CITATIONS
19	Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Scientific Reports, 2020, 10, 11168.	1.6	26
20	The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. Journal of Molecular Liquids, 2020, 314, 113589.	2.3	7
21	Physicochemical and in vitro cytotoxicity studies of inclusion complex between gemcitabine and cucurbit[7]uril host. Bioorganic Chemistry, 2020, 99, 103843.	2.0	7
22	Zeta potential technique for analyzing semen quality. MethodsX, 2020, 7, 100895.	0.7	9
23	Cyclopentadienyl ruthenium(II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer. European Journal of Medicinal Chemistry, 2020, 199, 112414.	2.6	14
24	Ruthenium dendrimers against acute promyelocytic leukemia:Â <i>in vitro</i> studies on HL-60 cells. Future Medicinal Chemistry, 2019, 11, 1741-1756.	1.1	14
25	Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal, 2019, 119, 61-73.	2.6	98
26	Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules, 2019, 9, 411.	1.8	19
27	Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. ACS Applied Nano Materials, 2019, 2, 2979-2990.	2.4	18
28	Dendrimer mediated targeting of siRNA against poloâ€like kinase for the treatment of triple negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 1933-1944.	2.1	31
29	In Vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules, 2019, 9, 155.	1.8	22
30	Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces, 2019, 179, 226-232.	2.5	4
31	Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics, 2019, 11, 25.	2.0	24
32	Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 2018, 181, 18-27.	1.5	33
33	Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. Journal of Luminescence, 2018, 194, 170-178.	1.5	27
34	Cationic liposomes for co-delivery of paclitaxel and anti-Plk1 siRNA to achieve enhanced efficacy in breast cancer. Journal of Drug Delivery Science and Technology, 2018, 48, 253-265.	1.4	17
35	Dendrimer as a new potential carrier for topical delivery of siRNA: A comparative study of dendriplex vs. lipoplex for delivery of TNF-1± siRNA. International Journal of Pharmaceutics, 2018, 550, 240-250.	2.6	46
36	Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 2018, 118, 1773-1780.	3.6	13

#	Article	IF	CITATIONS
37	Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, 152, 414-422.	2.5	42
38	Interaction of α-synuclein with Rhus typhina tannin – Implication for Parkinson's disease. Colloids and Surfaces B: Biointerfaces, 2017, 155, 159-165.	2.5	16
39	Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 11-16.	2.5	9
40	Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). European Polymer Journal, 2017, 87, 39-47.	2.6	34
41	Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.	0.9	26
42	The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3005-3016.	1.4	7
43	Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2016, 6, 97546-97554.	1.7	10
44	Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. Journal of Membrane Biology, 2016, 249, 171-179.	1.0	11
45	Effect of dendrimers on selected enzymes—Evaluation of nano carriers. International Journal of Pharmaceutics, 2016, 499, 247-254.	2.6	21
46	Influence of PAMAM dendrimers on the human insulin. AIP Conference Proceedings, 2015, , .	0.3	3
47	Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 907-915.	1.4	20
48	Improving thermal stability of thermophilic l -threonine aldolase from Thermotoga maritima. Journal of Biotechnology, 2015, 199, 69-76.	1.9	8
49	Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids and Surfaces B: Biointerfaces, 2015, 134, 377-383.	2.5	31
50	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, 485, 261-269.	2.6	64
51	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	2.6	71
52	Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin. Colloids and Surfaces B: Biointerfaces, 2014, 123, 623-628.	2.5	28
53	How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 2014, 181, 40-52.	4.8	93
54	Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation. Journal of Luminescence, 2014, 148, 364-369.	1.5	9

#	Article	IF	CITATIONS
55	HIV-Antigens Charged on Phosphorus Dendrimers as Tools for Tolerogenic Dendritic Cells-Based Immunotherapy. Current Medicinal Chemistry, 2014, 21, 1898-1909.	1.2	19
56	Glycodendrimers as new tools in the search for effective anti-HIV DC-based immunotherapies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 972-984.	1.7	36
57	Growth, Development and Yield of <i>Crambe Abyssinica</i> Under Saline Irrigation in the Greenhouse. Journal of Agronomy and Crop Science, 2013, 199, 331-339.	1.7	27
58	Complexation of HIV derived peptides with carbosilane dendrimers. Colloids and Surfaces B: Biointerfaces, 2013, 101, 236-242.	2.5	40
59	Biophysical Characterization of Glycodendrimers As Nano-carriers for HIV Peptides. Current Medicinal Chemistry, 2013, 20, 3935-3943.	1.2	17
60	Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1372-1378.	1.7	49
61	siRNA carriers based on carbosilane dendrimers affect zeta potential and size of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2209-2216.	1.4	31
62	Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone. International Journal of Biological Macromolecules, 2012, 51, 908-914.	3.6	3
63	Phosphorus Dendrimers Affect Alzheimer's (Aβ _{1–28}) Peptide and MAP-Tau Protein Aggregation. Molecular Pharmaceutics, 2012, 9, 458-469.	2.3	98
64	Effect of phosphorus dendrimers on DMPC lipid membranes. Chemistry and Physics of Lipids, 2012, 165, 408-413.	1.5	35
65	Cationic carbosilane dendrimers–lipid membrane interactions. Chemistry and Physics of Lipids, 2012, 165, 401-407.	1.5	30
66	Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cellular and Molecular Biology Letters, 2012, 17, 333-48.	2.7	30
67	Interactions of phosphorus-containing dendrimers with liposomes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 221-226.	1.2	40
68	Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience, 2011, 180, 229-237.	1.1	49
69	A New Chimeric Drug Delivery Nano System (chi-aDDnS) Composed of PAMAM G 3.5 Dendrimer and Liposomes as Doxorubicin's Carrier. <l>ln Vitro</l> Pharmacological Studies. Journal of Nanoscience and Nanotechnology, 2011, 11, 3764-3772.	0.9	26
70	Membrane cholesterol content plays a key role in the neurotoxicity of βâ€amyloid: implications for Alzheimer's disease. Aging Cell, 2011, 10, 595-603.	3.0	81
71	Oil content and lipid composition of safflower (Carthamus tinctorius) irrigated with saline water under greenhouse and field conditions. Annals of Applied Biology, 2011, 159, 169-177.	1.3	5
72	Influence of irrigation-water salinity on lipids of Crambe abyssinica seeds. Chemistry of Natural Compounds, 2011, 46, 862-865.	0.2	5

#	Article	IF	CITATIONS
73	Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids and Surfaces B: Biointerfaces, 2011, 82, 8-12.	2.5	41
74	The interaction of PVP complexes of gossypol and its derivatives with an artificial membrane lipid matrix. Cellular and Molecular Biology Letters, 2010, 15, 98-117.	2.7	5
75	Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes. Journal of Thermal Analysis and Calorimetry, 2010, 99, 741-747.	2.0	30
76	Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Molecular Biology Reports, 2010, 37, 2003-2008.	1.0	30
77	New Drug Delivery Nanosystem Combining Liposomal and Dendrimeric Technology (Liposomal) Tj ETQq1 1 0.784	1314 rgBT 1.6 rgBT	Qyerlock 1
78	Interaction of the prion protein fragment PrP 185–206 with biological membranes: effect on membrane permeability. Journal of Peptide Science, 2010, 16, 342-348.	0.8	10
79	The Immobilization of Gossypol Derivative on N-Polyvinylpyrrolidone Increases its Water Solubility and Modifies Membrane-Active Properties. Journal of Medicinal Chemistry, 2009, 52, 4119-4125.	2.9	13
80	Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimers. New Journal of Chemistry, 2009, 33, 1087.	1.4	50
81	The Influence of Densely Organized Maltose Shells on the Biological Properties of Poly(propylene) Tj ETQq1 1 0.7 14, 7030-7041.	84314 rgE 1.7	3T /Overlock 135
82	Left- and right-handed LHC II macroaggregates revealed by circularly polarized chlorophyll luminescence. Photosynthesis Research, 2006, 87, 253-265.	1.6	13
83	Isolation and Properties of a Biocidal Peptide from Hibiscus cannabinus Seeds. Chemistry of Natural Compounds, 2004, 40, 63-65.	0.2	2
84	The Effect of Pea Chloroplast Alignment and Variation of Excitation Wavelength on the Circularly Polarized Chlorophyll Luminescence. Journal of Fluorescence, 2004, 14, 207-216.	1.3	5