Ting-Jun Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1065835/publications.pdf

Version: 2024-02-01

9234 12233 23,519 373 74 citations h-index papers

g-index 383 383 383 20225 docs citations times ranked citing authors all docs

133

#	Article	IF	CITATIONS
1	Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, $2011, 51, 69-82$.	2.5	2,005
2	End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 2019, 119, 9478-9508.	23.0	1,064
3	ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 2021, 49, W5-W14.	6.5	915
4	Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 2016, 18, 12964-12975.	1.3	669
5	Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Journal of Computational Chemistry, 2011, 32, 866-877.	1.5	615
6	Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 2014, 16, 16719-16729.	1.3	586
7	Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics, 2014, 16, 22035-22045.	1.3	432
8	Assessing the Performance of MM/PBSA and MM/GBSA Methods. 3. The Impact of Force Fields and Ligand Charge Models. Journal of Physical Chemistry B, 2013, 117, 8408-8421.	1.2	419
9	Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Physical Chemistry Chemical Physics, 2016, 18, 22129-22139.	1.3	350
10	HawkDock: a web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 2019, 47, W322-W330.	6.5	329
11	The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 2015, 86, 2-10.	6.6	306
12	Recent Advances in Free Energy Calculations with a Combination of Molecular Mechanics and Continuum Models. Current Computer-Aided Drug Design, 2006, 2, 287-306.	0.8	300
13	Molecular Dynamics and Free Energy Studies on the Wild-type and Double Mutant HIV-1 Protease Complexed with Amprenavir and Two Amprenavir-Related Inhibitors:  Mechanism for Binding and Drug Resistance. Journal of Medicinal Chemistry, 2007, 50, 1177-1188.	2.9	251
14	Janus Structures of Transition Metal Dichalcogenides as the Heterojunction Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 3123-3129.	1.5	246
15	Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics, 2018, 20, 14450-14460.	1.3	243
16	Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. Journal of Cheminformatics, 2021, 13, 12.	2.8	214
17	ADME Evaluation in Drug Discovery. 4. Prediction of Aqueous Solubility Based on Atom Contribution Approach. Journal of Chemical Information and Computer Sciences, 2004, 44, 266-275.	2.8	213
18	Characterization of Domain–Peptide Interaction Interface: A Case Study on the Amphiphysin-1 SH3 Domain. Journal of Molecular Biology, 2008, 376, 1201-1214.	2.0	194

#	Article	IF	Citations
19	Characterization of Domain–Peptide Interaction Interface: Prediction of SH3 Domain-Mediated Protein–Protein Interaction Network in Yeast by Generic Structure-Based Models. Journal of Proteome Research, 2012, 11, 2982-2995.	1.8	194
20	Recent Development and Application of Virtual Screening in Drug Discovery: An Overview. Current Pharmaceutical Design, 2004, 10, 1011-1033.	0.9	185
21	ADME Evaluation in Drug Discovery. 7. Prediction of Oral Absorption by Correlation and Classification. Journal of Chemical Information and Modeling, 2007, 47, 208-218.	2.5	171
22	Recent Advances in Computational Prediction of Drug Absorption and Permeability in Drug Discovery. Current Medicinal Chemistry, 2006, 13, 2653-2667.	1.2	167
23	ADME Evaluation in Drug Discovery. 5. Correlation of Caco-2 Permeation with Simple Molecular Properties. Journal of Chemical Information and Computer Sciences, 2004, 44, 1585-1600.	2.8	157
24	ADME Evaluation in Drug Discovery. 6. Can Oral Bioavailability in Humans Be Effectively Predicted by Simple Molecular Property-Based Rules?. Journal of Chemical Information and Modeling, 2007, 47, 460-463.	2.5	155
25	Allosite: a method for predicting allosteric sites. Bioinformatics, 2013, 29, 2357-2359.	1.8	153
26	ADME Evaluation in Drug Discovery. 10. Predictions of P-Glycoprotein Inhibitors Using Recursive Partitioning and Naive Bayesian Classification Techniques. Molecular Pharmaceutics, 2011, 8, 889-900.	2.3	148
27	Computational Analysis and Prediction of the Binding Motif and Protein Interacting Partners of the Abl SH3 Domain. PLoS Computational Biology, 2006, 2, e1.	1.5	145
28	From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1429.	6.2	142
29	Development of Polarizable Models for Molecular Mechanical Calculations I: Parameterization of Atomic Polarizability. Journal of Physical Chemistry B, 2011, 115, 3091-3099.	1.2	137
30	ADMET Evaluation in Drug Discovery. 12. Development of Binary Classification Models for Prediction of hERG Potassium Channel Blockage. Molecular Pharmaceutics, 2012, 9, 996-1010.	2.3	137
31	Application of molecular dynamics simulations in molecular property prediction II: Diffusion coefficient. Journal of Computational Chemistry, 2011, 32, 3505-3519.	1.5	135
32	Potential Application of Novel Boron-Doped Graphene Nanoribbon as Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2016, 120, 17427-17434.	1.5	131
33	PROTAC-DB: an online database of PROTACs. Nucleic Acids Research, 2021, 49, D1381-D1387.	6.5	127
34	Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale, 2017, 9, 8608-8615.	2.8	124
35	Atomistic Origins of Surface Defects in CH ₃ NH ₃ PbBr ₃ Perovskite and Their Electronic Structures. ACS Nano, 2017, 11, 2060-2065.	7. 3	123
36	Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discovery Today, 2012, 17, 343-351.	3.2	122

#	Article	IF	CITATIONS
37	Structure – ADME relationship: still a long way to go?. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 759-770.	1.5	120
38	ADME evaluation in drug discovery. Journal of Molecular Modeling, 2002, 8, 337-349.	0.8	116
39	ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine. Journal of Chemical Information and Modeling, 2007, 47, 2408-2415.	2.5	114
40	ADME Evaluation in Drug Discovery. 9. Prediction of Oral Bioavailability in Humans Based on Molecular Properties and Structural Fingerprints. Molecular Pharmaceutics, 2011, 8, 841-851.	2.3	114
41	Application of Molecular Dynamics Simulations in Molecular Property Prediction. 1. Density and Heat of Vaporization. Journal of Chemical Theory and Computation, 2011, 7, 2151-2165.	2.3	114
42	CaFE: a tool for binding affinity prediction using end-point free energy methods. Bioinformatics, 2016, 32, 2216-2218.	1.8	114
43	ADME Evaluation in Drug Discovery. 3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors. Journal of Chemical Information and Computer Sciences, 2003, 43, 2137-2152.	2.8	113
44	Evaluating the potency of HIVâ€1 protease drugs to combat resistance. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1163-1174.	1.5	110
45	Development of Reliable Aqueous Solubility Models and Their Application in Druglike Analysis. Journal of Chemical Information and Modeling, 2007, 47, 1395-1404.	2.5	103
46	Recent Advances on Aqueous Solubility Prediction. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 328-338.	0.6	102
47	ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. Journal of Cheminformatics, 2016, 8, 6.	2.8	102
48	Develop and Test a Solvent Accessible Surface Area-Based Model in Conformational Entropy Calculations. Journal of Chemical Information and Modeling, 2012, 52, 1199-1212.	2.5	99
49	Two-Dimensional MnO ₂ as a Better Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 28783-28788.	1.5	98
50	Characterization of Domain-Peptide Interaction Interface. Molecular and Cellular Proteomics, 2009, 8, 639-649.	2.5	96
51	Drug and Drug Candidate Building Block Analysis. Journal of Chemical Information and Modeling, 2010, 50, 55-67.	2.5	96
52	Drug-likeness Analysis of Traditional Chinese Medicines: Prediction of Drug-likeness Using Machine Learning Approaches. Molecular Pharmaceutics, 2012, 9, 2875-2886.	2.3	96
53	ADMET Evaluation in Drug Discovery. 13. Development of <i>in Silico</i> Prediction Models for P-Glycoprotein Substrates. Molecular Pharmaceutics, 2014, 11, 716-726.	2.3	96
54	Assessing an Ensemble Docking-Based Virtual Screening Strategy for Kinase Targets by Considering Protein Flexibility. Journal of Chemical Information and Modeling, 2014, 54, 2664-2679.	2.5	96

#	Article	IF	CITATIONS
55	Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Physical Chemistry Chemical Physics, 2019, 21, 10135-10145.	1.3	96
56	Mechanism of Graphene Oxide as an Enzyme Inhibitor from Molecular Dynamics Simulations. ACS Applied Materials & Dy	4.0	95
57	ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches. Molecular Pharmaceutics, 2016, 13, 2855-2866.	2.3	90
58	Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 3330-3342.	4.0	90
59	Comprehensive Evaluation of Fourteen Docking Programs on Protein–Peptide Complexes. Journal of Chemical Theory and Computation, 2020, 16, 3959-3969.	2.3	90
60	New Ti-decorated B40 fullerene as a promising hydrogen storage material. Scientific Reports, 2015, 5, 9952.	1.6	89
61	InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein–Ligand Interaction Predictions. Journal of Medicinal Chemistry, 2021, 64, 18209-18232.	2.9	87
62	P-loop Conformation Governed Crizotinib Resistance in G2032R-Mutated ROS1 Tyrosine Kinase: Clues from Free Energy Landscape. PLoS Computational Biology, 2014, 10, e1003729.	1.5	86
63	A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nature Communications, 2021, 12, 6775.	5.8	86
64	A 3D Structure Database of Components from Chinese Traditional Medicinal Herbs. Journal of Chemical Information and Computer Sciences, 2002, 42, 481-489.	2.8	85
65	Insight into Crizotinib Resistance Mechanisms Caused by Three Mutations in ALK Tyrosine Kinase using Free Energy Calculation Approaches. Journal of Chemical Information and Modeling, 2013, 53, 2376-2389.	2.5	85
66	ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches. Journal of Chemical Information and Modeling, 2019, 59, 4587-4601.	2.5	85
67	Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein–RNA complexes. Rna, 2018, 24, 1183-1194.	1.6	84
68	Combined strategies in structure-based virtual screening. Physical Chemistry Chemical Physics, 2020, 22, 3149-3159.	1.3	83
69	Predictions of Binding of a Diverse Set of Ligands to Gelatinase-A by a Combination of Molecular Dynamics and Continuum Solvent Models. Journal of Physical Chemistry B, 2002, 106, 5527-5535.	1.2	82
70	Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1321-1326.	3.3	82
71	Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discovery Today, 2013, 18, 592-600.	3.2	81
72	Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein–protein Interactions. Physical Chemistry Chemical Physics, 2019, 21, 18958-18969.	1.3	80

#	Article	IF	Citations
73	Drug Discovery Targeting Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 2019, 62, 10927-10954.	2.9	80
74	Predicting drug resistance of the HIVâ€1 protease using molecular interaction energy components. Proteins: Structure, Function and Bioinformatics, 2009, 74, 837-846.	1.5	78
75	Mapping the Binding Site of a Large Set of Quinazoline Type EGF-R Inhibitors Using Molecular Field Analyses and Molecular Docking Studies. Journal of Chemical Information and Computer Sciences, 2003, 43, 273-287.	2.8	76
76	Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Advances, 2016, 6, 52377-52383.	1.7	76
77	Molybdenum disulfide as a highly efficient adsorbent for non-polar gases. Physical Chemistry Chemical Physics, 2015, 17, 11700-11704.	1.3	75
78	Stable and metallic borophene nanoribbons from first-principles calculations. Journal of Materials Chemistry C, 2016, 4, 6380-6385.	2.7	75
79	Recent Developments of In Silico Predictions of Intestinal Absorption and Oral Bioavailability. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 497-506.	0.6	74
80	Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nature Machine Intelligence, 2021, 3, 914-922.	8.3	73
81	Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. Scientific Reports, 2015, 5, 8457.	1.6	72
82	B40 fullerene: An efficient material for CO2 capture, storage and separation. Current Applied Physics, 2015, 15, 1084-1089.	1.1	71
83	Prediction of Binding Affinities between the Human Amphiphysin-1 SH3 Domain and Its Peptide Ligands Using Homology Modeling, Molecular Dynamics and Molecular Field Analysis. Journal of Proteome Research, 2006, 5, 32-43.	1.8	70
84	Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations. Molecular BioSystems, 2013, 9, 361.	2.9	70
85	SiC ₇ siligraphene: a novel donor material with extraordinary sunlight absorption. Nanoscale, 2016, 8, 6994-6999.	2.8	70
86	Monolayer graphitic germanium carbide (g-GeC): the promising cathode catalyst for fuel cell and lithium–oxygen battery applications. Journal of Materials Chemistry A, 2018, 6, 2212-2218.	5.2	70
87	Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Briefings in Bioinformatics, 2021, 22, .	3.2	70
88	Prediction of peptides binding to the PKA RIIÎ \pm subunit using a hierarchical strategy. Bioinformatics, 2011, 27, 1814-1821.	1.8	67
89	Recent Developments in Computational Prediction of hERG Blockage. Current Topics in Medicinal Chemistry, 2013, 13, 1317-1326.	1.0	67
90	Development and Evaluation of an Integrated Virtual Screening Strategy by Combining Molecular Docking and Pharmacophore Searching Based on Multiple Protein Structures. Journal of Chemical Information and Modeling, 2013, 53, 2743-2756.	2.5	66

#	Article	IF	CITATIONS
91	Discovery of Novel Inhibitors Targeting the Macrophage Migration Inhibitory Factor via Structure-Based Virtual Screening and Bioassays. Journal of Medicinal Chemistry, 2014, 57, 3737-3745.	2.9	66
92	ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Molecular Pharmaceutics, 2017, 14, 3935-3953.	2.3	66
93	Fast Approaches for Molecular Polarizability Calculations. Journal of Physical Chemistry A, 2007, 111, 4443-4448.	1.1	65
94	Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discovery Today, 2013, 18, 1323-1333.	3.2	64
95	Theoretical investigations on novel SiC5 siligraphene as gas sensor for air pollutants. Carbon, 2017, 113, 114-121.	5.4	64
96	Applications of Genetic Algorithms on the Structureâ ²² Activity Relationship Analysis of Some Cinnamamides. Journal of Chemical Information and Computer Sciences, 1999, 39, 775-781.	2.8	63
97	Theoretical Studies on the Susceptibility of Oseltamivir against Variants of 2009 A/H1N1 Influenza Neuraminidase. Journal of Chemical Information and Modeling, 2012, 52, 2715-2729.	2.5	63
98	Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. Journal of Cheminformatics, 2012, 4, 31.	2.8	63
99	Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein and Cell, 2021, 12, 769-787.	4.8	63
100	ADMET Evaluation in Drug Discovery. 11. PharmacoKinetics Knowledge Base (PKKB): A Comprehensive Database of Pharmacokinetic and Toxic Properties for Drugs. Journal of Chemical Information and Modeling, 2012, 52, 1132-1137.	2.5	62
101	MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction. Briefings in Bioinformatics, 2021, 22, .	3.2	62
102	Aqueous Solubility Prediction Based on Weighted Atom Type Counts and Solvent Accessible Surface Areas. Journal of Chemical Information and Modeling, 2009, 49, 571-581.	2.5	61
103	Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Scientific Reports, 2016, 6, 24817.	1.6	59
104	ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Molecular Pharmaceutics, 2017, 14, 2407-2421.	2.3	59
105	farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics, 2019, 35, 1777-1779.	1.8	59
106	Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory. Scientific Reports, 2015, 5, 16854.	1.6	57
107	Theoretical investigations on SiC2 siligraphene as promising metal-free catalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 299, 371-379.	4.0	57
108	MoS ₂ supported single platinum atoms and their superior catalytic activity for CO oxidation: a density functional theory study. Journal of Materials Chemistry A, 2015, 3, 23113-23119.	5.2	56

#	Article	IF	CITATIONS
109	The Tricyclic Antidepressant Amitriptyline Inhibits d-Cyclin Transactivation and Induces Myeloma Cell Apoptosis by Inhibiting Histone Deacetylases: In Vitro and In Silico Evidence. Molecular Pharmacology, 2011, 79, 672-680.	1.0	54
110	Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology, 2022, 72, 135-144.	2.6	54
111	Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 1734-1741.	5.2	53
112	Characterizing Drug–Target Residence Time with Metadynamics: How To Achieve Dissociation Rate Efficiently without Losing Accuracy against Time-Consuming Approaches. Journal of Chemical Information and Modeling, 2017, 57, 1895-1906.	2.5	53
113	ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 2021, 12, 2346.	5.8	52
114	Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling. Journal of Chemical Theory and Computation, 2016, 12, 4611-4619.	2.3	51
115	Integrative Modeling of PROTAC-Mediated Ternary Complexes. Journal of Medicinal Chemistry, 2021, 64, 16271-16281.	2.9	51
116	Structural basis of GABAB receptor–Gi protein coupling. Nature, 2021, 594, 594-598.	13.7	50
117	Discovery of Rho-kinase inhibitors by docking-based virtual screening. Molecular BioSystems, 2013, 9, 1511.	2.9	49
118	Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Briefings in Bioinformatics, 2021, 22, 497-514.	3.2	49
119	Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. Protein Engineering, Design and Selection, 1999, 12, 639-648.	1.0	48
120	New Use for an Old Drug: Inhibiting ABCG2 with Sorafenib. Molecular Cancer Therapeutics, 2012, 11, 1693-1702.	1.9	48
121	Importance of protein flexibility in ranking inhibitor affinities: modeling the binding mechanisms of piperidine carboxamides as Type I1/2 ALK inhibitors. Physical Chemistry Chemical Physics, 2015, 17, 6098-6113.	1.3	48
122	HawkRank: a new scoring function for protein–protein docking based on weighted energy terms. Journal of Cheminformatics, 2017, 9, 66.	2.8	48
123	The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties. Oncogene, 2019, 38, 4932-4947.	2.6	48
124	The structure of erastin-bound xCT–4F2hc complexÂreveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Research, 2022, 32, 687-690.	5.7	48
125	Farnesyltransferase and geranylgeranyltransferase I: structures, mechanism, inhibitors and molecular modeling. Drug Discovery Today, 2015, 20, 267-276.	3.2	47
126	Simulation of the Phase Behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn. Journal of Physical Chemistry B, 2002, 106, 11397-11403.	1.2	46

#	Article	IF	CITATIONS
127	Improving the Alkaline Stability of Imidazolium Cations by Substitution. ChemPhysChem, 2014, 15, 3006-3014.	1.0	46
128	DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discovery Today, 2019, 24, 2323-2331.	3.2	46
129	ADME Evaluation in Drug Discovery. 2. Prediction of Partition Coefficient by Atom-Additive Approach Based on Atom-Weighted Solvent Accessible Surface Areas. Journal of Chemical Information and Computer Sciences, 2003, 43, 1058-1067.	2.8	45
130	Discovery of Novel and Selective Adenosine A _{2A} Receptor Antagonists for Treating Parkinson's Disease through Comparative Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2017, 57, 1474-1487.	2.5	45
131	Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products. Journal of Chemical Information and Modeling, 2018, 58, 1182-1193.	2.5	45
132	ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. Journal of Cheminformatics, 2020, 12, 16.	2.8	45
133	Computational Modeling of Structure-Function of G Protein-Coupled Receptors with Applications for Drug Design. Current Medicinal Chemistry, 2010, 17, 1167-1180.	1.2	44
134	Computational Simulation of Drug Delivery at Molecular Level. Current Medicinal Chemistry, 2010, 17, 4482-4491.	1.2	44
135	A magic drug target: Androgen receptor. Medicinal Research Reviews, 2019, 39, 1485-1514.	5.0	44
136	Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies. Drug Discovery Today, 2015, 20, 988-994.	3.2	43
137	Photophysical Studies on the Mono- and Dichromophoric Hemicyanine Dyes I. Photoelectric Conversion from the Dye Modified ITO Electrodes. Journal of Physical Chemistry B, 2002, 106, 10020-10030.	1.2	42
138	Combating Drug-Resistant Mutants of Anaplastic Lymphoma Kinase with Potent and Selective Type-I ^{$1/2$} Inhibitors by Stabilizing Unique DFG-Shifted Loop Conformation. ACS Central Science, 2017, 3, 1208-1220.	5.3	42
139	CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors. Nucleic Acids Research, 2021, 49, D1122-D1129.	6.5	42
140	The Antiparasitic Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity. Journal of Biological Chemistry, 2013, 288, 34181-34189.	1.6	41
141	Directly Binding Rather than Induced-Fit Dominated Binding Affinity Difference in (<i>S</i>)- and (<i>R</i>)-Crizotinib Bound MTH1. Journal of Chemical Theory and Computation, 2016, 12, 851-860.	2.3	41
142	Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery. Journal of Chemical Information and Modeling, 2019, 59, 3714-3726.	2.5	41
143	Increased gene copy number of <i>DEFA1/DEFA3</i> worsens sepsis by inducing endothelial pyroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3161-3170.	3.3	41
144	Molecular Principle of Topotecan Resistance by Topoisomerase I Mutations through Molecular Modeling Approaches. Journal of Chemical Information and Modeling, 2013, 53, 997-1006.	2.5	40

#	Article	IF	Citations
145	Two-dimensional siligraphenes as cathode catalysts for nonaqueous lithium-oxygen batteries. Carbon, 2018, 126, 580-587.	5.4	40
146	Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring. Journal of Chemical Information and Modeling, 2020, 60, 4216-4230.	2.5	40
147	Empirical Aqueous Solvation Models Based on Accessible Surface Areas with Implicit Electrostatics. Journal of Physical Chemistry B, 2002, 106, 11295-11304.	1.2	39
148	Studies on the Interactions between \hat{l}^2 (sub>2 Adrenergic Receptor and Gs Protein by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2012, 52, 1005-1014.	2.5	39
149	Structural basis of the interactions between CXCR4 and CXCL12/SDF-1 revealed by theoretical approaches. Molecular BioSystems, 2013, 9, 2107.	2.9	39
150	Modeling Compound–Target Interaction Network of Traditional Chinese Medicines for Type II Diabetes Mellitus: Insight for Polypharmacology and Drug Design. Journal of Chemical Information and Modeling, 2013, 53, 1787-1803.	2.5	39
151	Inhibition of macrophage migration inhibitory factor (<scp>MIF</scp>) tautomerase activity suppresses microgliaâ€mediated inflammatory responses. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 1134-1144.	0.9	39
152	B ₄₀ fullerene as a highly sensitive molecular device for NH ₃ detection at low bias: a first-principles study. Nanotechnology, 2016, 27, 075501.	1.3	39
153	Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: a molecular simulation study. Physical Chemistry Chemical Physics, 2019, 21, 12931-12947.	1.3	39
154	Beware of the generic machine learning-based scoring functions in structure-based virtual screening. Briefings in Bioinformatics, 2021, 22, .	3.2	39
155	Mining Toxicity Information from Large Amounts of Toxicity Data. Journal of Medicinal Chemistry, 2021, 64, 6924-6936.	2.9	39
156	Targeting the Phosphatidylinositol 3-Kinase/AKT Pathway for the Treatment of Multiple Myeloma. Current Medicinal Chemistry, 2014, 21, 3173-3187.	1.2	39
157	Recent Developments of In Silico Predictions of Oral Bioavailability. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 362-374.	0.6	38
158	Binding Affinities for a Series of Selective Inhibitors of Gelatinase-A Using Molecular Dynamics with a Linear Interaction Energy Approach. Journal of Physical Chemistry B, 2001, 105, 5304-5315.	1.2	37
159	Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study. AIP Advances, 2015, 5, .	0.6	37
160	Molecular Dynamics Simulations Revealed the Regulation of Ligands to the Interactions between Androgen Receptor and Its Coactivator. Journal of Chemical Information and Modeling, 2018, 58, 1652-1661.	2.5	37
161	DDInter: an online drug–drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Research, 2022, 50, D1200-D1207.	6.5	37
162	3D QSAR Analyses of Novel Tyrosine Kinase Inhibitors Based on Pharmacophore Alignment. Journal of Chemical Information and Computer Sciences, 2001, 41, 1032-1040.	2.8	36

#	Article	IF	CITATIONS
163	Advances in computationally modeling human oral bioavailability. Advanced Drug Delivery Reviews, 2015, 86, 11-16.	6.6	36
164	Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2017, 19, 20457-20462.	1.3	36
165	Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discovery Today, 2019, 24, 1389-1397.	3.2	36
166	Systematic Modeling of log <i>D</i> _{7.4} Based on Ensemble Machine Learning, Group Contribution, and Matched Molecular Pair Analysis. Journal of Chemical Information and Modeling, 2020, 60, 63-76.	2.5	36
167	RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. Journal of Medicinal Chemistry, 2022, 65, 9478-9492.	2.9	36
168	fastDRH: a webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB(GB)SA computation. Briefings in Bioinformatics, 2022, 23, .	3.2	34
169	Frequent hitters: nuisance artifacts in high-throughput screening. Drug Discovery Today, 2020, 25, 657-667.	3.2	33
170	The Mesodyn simulation of pluronic water mixtures using the †equivalent chain' method. Physical Chemistry Chemical Physics, 2000, 2, 2749-2753.	1.3	32
171	First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped. Journal of Alloys and Compounds, 2012, 541, 250-255.	2.8	32
172	Discovery of Novel Androgen Receptor Ligands by Structure-based Virtual Screening and Bioassays. Genomics, Proteomics and Bioinformatics, 2018, 16, 416-427.	3.0	32
173	The Influence of Defects on Moâ€Doped TiO ₂ by Firstâ€Principles Studies. ChemPhysChem, 2012, 13, 1514-1521.	1.0	31
174	First-Principles Study on Migration and Coalescence of Point Defects in Monolayer Graphene. Journal of Physical Chemistry C, 2013, 117, 17066-17072.	1.5	31
175	The Selective Interaction between Silica Nanoparticles and Enzymes from Molecular Dynamics Simulations. PLoS ONE, 2014, 9, e107696.	1.1	31
176	Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2014, 5, 1642-1647.	2.1	31
177	Pathway-Dependent Inhibition of Paclitaxel Hydroxylation by Kinase Inhibitors and Assessment of Drug–Drug Interaction Potentials. Drug Metabolism and Disposition, 2014, 42, 782-795.	1.7	30
178	Discovery of a benzofuran derivative (MBPTA) as a novel ROCK inhibitor that protects against MPP+-induced oxidative stress and cell death in SH-SY5Y cells. Free Radical Biology and Medicine, 2014, 74, 283-293.	1.3	30
179	Communication between the Ligand-Binding Pocket and the Activation Function-2 Domain of Androgen Receptor Revealed by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2019, 59, 842-857.	2.5	30
180	Parameters for the Generalized Born Model Consistent with RESP Atomic Partial Charge Assignment Protocol. Journal of Physical Chemistry B, 2003, 107, 9071-9078.	1.2	29

#	Article	IF	CITATIONS
181	Influence of Doping Effect on Zinc Oxide by First-Principles Studies. Journal of Physical Chemistry C, 2011, 115, 7706-7716.	1.5	29
182	Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations. Molecular BioSystems, 2012, 8, 2699.	2.9	29
183	Understanding microscopic binding of macrophage migration inhibitory factor with phenolic hydrazones by molecular docking, molecular dynamics simulations and free energy calculations. Molecular BioSystems, 2012, 8, 2260.	2.9	29
184	The competitive binding between inhibitors and substrates of HCV NS3/4A protease: A general mechanism of drug resistance. Antiviral Research, 2014, 103, 60-70.	1.9	29
185	Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chemical Research in Toxicology, 2015, 28, 116-125.	1.7	29
186	VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein–Ligand Binding Free Energy Calculations. Journal of Chemical Information and Modeling, 2021, 61, 2844-2856.	2.5	29
187	Adsorption and Diffusion of Benzene in ITQ-1 Type Zeolite:Â Grand Canonical Monte Carlo and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2000, 104, 9356-9364.	1.2	28
188	Unraveling the Allosteric Inhibition Mechanism of PTP1B by Free Energy Calculation Based on Umbrella Sampling. Journal of Chemical Information and Modeling, 2013, 53, 1157-1167.	2.5	28
189	Induce magnetism into silicene by embedding transition-metal atoms. Applied Physics Letters, 2015, 106, .	1.5	28
190	Improving structure-based virtual screening performance via learning from scoring function components. Briefings in Bioinformatics, 2021, 22, .	3.2	28
191	Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Advanced Science, 2022, 9, e2102435.	5.6	28
192	Structure-Based Design of Peptides against G3BP with Cytotoxicity on Tumor Cells. Journal of Chemical Information and Modeling, 2010, 50, 380-387.	2.5	27
193	Feasibility of Using Molecular Docking-Based Virtual Screening for Searching Dual Target Kinase Inhibitors. Journal of Chemical Information and Modeling, 2013, 53, 982-996.	2.5	27
194	Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays. Scientific Reports, 2015, 5, 16749.	1.6	27
195	Prediction of luciferase inhibitors by the high-performance MIEC-GBDT approach based on interaction energetic patterns. Physical Chemistry Chemical Physics, 2017, 19, 10163-10176.	1.3	27
196	Structure-Based Drug Design and Identification of H ₂ O-Soluble and Low Toxic Hexacyclic Camptothecin Derivatives with Improved Efficacy in Cancer and Lethal Inflammation Models in Vivo. Journal of Medicinal Chemistry, 2018, 61, 8613-8624.	2.9	27
197	A novel metal-free two-dimensional material for photocatalytic water splitting – phosphorus nitride (γ-PN). RSC Advances, 2017, 7, 50239-50245.	1.7	26
198	The adsorption, diffusion and capacity of lithium on novel boron-doped graphene nanoribbon: A density functional theory study. Applied Surface Science, 2019, 466, 737-745.	3.1	26

#	Article	IF	Citations
199	Structureâ€based discovery of CZL80, a caspaseâ€1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. British Journal of Pharmacology, 2020, 177, 3519-3534.	2.7	26
200	Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?. Briefings in Bioinformatics, 2021, 22, .	3.2	26
201	Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Research, 2021, 31, 1163-1175.	5.7	26
202	A novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway. Oncotarget, 2016, 7, 9296-9308.	0.8	26
203	Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines. Journal of Cheminformatics, 2013, 5, 5.	2.8	25
204	Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations. Antiviral Research, 2013, 100, 356-364.	1.9	25
205	The flexibility of P-glycoprotein for its poly-specific drug binding from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2013, 31, 612-629.	2.0	25
206	Comparative analyses of structural features and scaffold diversity for purchasable compound libraries. Journal of Cheminformatics, 2017, 9, 25.	2.8	25
207	Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities. Journal of Chemical Information and Modeling, 2020, 60, 5353-5365.	2.5	25
208	Identification of active molecules against <i>Mycobacterium tuberculosis</i> through machine learning. Briefings in Bioinformatics, 2021, 22, .	3.2	25
209	Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules. Briefings in Bioinformatics, 2021, 22, .	3.2	25
210	Recent Advances in Protein-Protein Docking. Current Drug Targets, 2016, 17, 1586-1594.	1.0	25
211	Proteome-wide Detection of Abl1 SH3-binding Peptides by Integrating Computational Prediction and Peptide Microarray. Molecular and Cellular Proteomics, 2012, 11, 0111.010389.	2.5	24
212	Adsorption of metal adatom on nanographene: Computational investigations. Carbon, 2015, 89, 249-259.	5.4	24
213	Lithium intercalation and diffusion in TiO ₂ nanotubes: a first-principles investigation. Physical Chemistry Chemical Physics, 2016, 18, 24370-24376.	1.3	24
214	Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32452-32462.	4.0	24
215	Featurization strategies for protein–ligand interactions and their applications in scoring function development. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1567.	6.2	24
216	Knowledge-based BERT: a method to extract molecular features like computational chemists. Briefings in Bioinformatics, 2022, 23, .	3.2	24

#	Article	IF	CITATIONS
217	Exploring the binding mechanisms of MIF to CXCR2 using theoretical approaches. Physical Chemistry Chemical Physics, 2015, 17, 3370-3382.	1.3	23
218	Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor. ACS Chemical Neuroscience, 2019, 10, 677-689.	1.7	23
219	Semiconducting Graphene on Silicon from First-Principles Calculations. ACS Nano, 2015, 9, 8562-8568.	7.3	22
220	Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models. Free Radical Biology and Medicine, 2015, 89, 1057-1066.	1.3	22
221	Importance of protein flexibility in molecular recognition: a case study on Type-I1/2 inhibitors of ALK. Physical Chemistry Chemical Physics, 2018, 20, 4851-4863.	1.3	22
222	Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method. Briefings in Bioinformatics, 2021, 22, .	3.2	22
223	Chapter 5 Recent Advances on in silico ADME Modeling. Annual Reports in Computational Chemistry, 2009, , 101-127.	0.9	21
224	Docking and MD study of histamine H4R based on the crystal structure of H1R. Journal of Molecular Graphics and Modelling, 2013, 39, 1-12.	1.3	21
225	Synthesis and antiproliferative evaluation of 2-hydroxylated (E)-stilbenes. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5470-5472.	1.0	21
226	Structural stability and band gap tunability of single-side hydrogenated graphene from first-principles calculations. Journal of Materials Chemistry C, 2015, 3, 3645-3649.	2.7	21
227	Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies. Physical Chemistry Chemical Physics, 2016, 18, 2034-2046.	1.3	21
228	Targeting phosphatidylinositol 3â€kinase gamma (PI3Kγ): Discovery and development of its selective inhibitors. Medicinal Research Reviews, 2021, 41, 1599-1621.	5.0	21
229	Scopy: an integrated negative design python library for desirable HTS/VS database design. Briefings in Bioinformatics, 2021, 22, .	3.2	21
230	Advances in the computational development of androgen receptor antagonists. Drug Discovery Today, 2020, 25, 1453-1461.	3.2	21
231	Calculation of the Maxwell stress tensor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular boundary integrals. Journal of Chemical Physics, 2005, 123, 084904.	1.2	20
232	Concerted Movement in pH-Dependent Gating of FocA from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2012, 52, 2119-2131.	2.5	20
233	Finding chemical drugs for genetic diseases. Drug Discovery Today, 2014, 19, 1836-1840.	3.2	20
234	Binding mechanisms of 1,4-dihydropyridine derivatives to L-type calcium channel Ca _v 1.2: a molecular modeling study. Molecular BioSystems, 2016, 12, 379-390.	2.9	20

#	Article	IF	Citations
235	Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Scientific Reports, 2018, 8, 13292.	1.6	20
236	Current advances in ligandâ€based target prediction. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1504.	6.2	20
237	Three-Dimensional Quantitative Structureâ° Activity Relationship Analysis of the New Potent Sulfonylureas Using Comparative Molecular Similarity Indices Analysis. Journal of Chemical Information and Computer Sciences, 2000, 40, 1002-1009.	2.8	19
238	Importance of a crystalline water network in docking-based virtual screening: a case study of BRD4. Physical Chemistry Chemical Physics, 2019, 21, 25276-25289.	1.3	19
239	Application of Negative Design To Design a More Desirable Virtual Screening Library. Journal of Medicinal Chemistry, 2020, 63, 4411-4429.	2.9	19
240	Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design. Molecular BioSystems, 2013, 9, 2435.	2.9	18
241	Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods. RNA Biology, 2016, 13, 1133-1143.	1.5	18
242	The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction. Journal of Cheminformatics, 2021, 13, 81.	2.8	18
243	Three-dimensional quantitative structure–activity relationship analyses of a series of cinnamamides. Chemometrics and Intelligent Laboratory Systems, 2001, 56, 123-132.	1.8	17
244	Theoretical studies on beta and delta isoform-specific binding mechanisms of phosphoinositide 3-kinase inhibitors. Molecular BioSystems, 2014, 10, 454-466.	2.9	17
245	Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease. Journal of Chemical Information and Modeling, 2015, 55, 1400-1412.	2.5	17
246	Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations. Molecular BioSystems, 2015, 11, 2568-2578.	2.9	17
247	Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Neoplasia, 2020, 22, 179-191.	2.3	17
248	Structural Analysis and Identification of False Positive Hits in Luciferase-Based Assays. Journal of Chemical Information and Modeling, 2020, 60, 2031-2043.	2.5	17
249	A novel PI3K inhibitor PIK-C98 displays potent preclinical activity against multiple myeloma. Oncotarget, 2015, 6, 185-195.	0.8	17
250	Root-aligned SMILES: a tight representation for chemical reaction prediction. Chemical Science, 2022, 13, 9023-9034.	3.7	17
251	Derivation of a Retinoid X Receptor Scaffold from Peroxisome Proliferatorâ€Activated Receptorâ€Î³ Ligand 1â€Di(1 <i>H</i> â€indolâ€3â€yl)methylâ€4â€trifluoromethylbenzene. ChemMedChem, 2009, 4, 1106-1119.	1.6	16
252	Insight into the Structural Requirements of Narlaprevir-Type Inhibitors of NS3/NS4A Protease Based on HQSAR and Molecular Field Analyses. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 439-450.	0.6	16

#	Article	IF	Citations
253	Controlling of the electronic properties of WS ₂ and graphene oxide heterostructures from first-principles calculations. Journal of Materials Chemistry C, 2017, 5, 201-207.	2.7	16
254	Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin. Cell Death Discovery, 2017, 3, 17051.	2.0	16
255	How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study. Scientific Reports, 2017, 7, 9088.	1.6	16
256	Comprehensive assessment of nine docking programs on type II kinase inhibitors: prediction accuracy of sampling power, scoring power and screening power. Briefings in Bioinformatics, 2018, , .	3.2	16
257	DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges. Briefings in Bioinformatics, 2021, 22, .	3.2	16
258	Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharmaceutica Sinica B, 2021, 11, 3567-3584.	5.7	16
259	Computational Modeling Toward Understanding Agonist Binding on Dopamine 3. Journal of Chemical Information and Modeling, 2010, 50, 1633-1643.	2.5	15
260	A rule-based algorithm for automatic bond type perception. Journal of Cheminformatics, 2012, 4, 26.	2.8	15
261	The mechanism of proton translocation in respiratory complex I from molecular dynamics. Journal of Receptor and Signal Transduction Research, 2015, 35, 170-179.	1.3	15
262	Discovery of a novel ROCK2 inhibitor with anti-migration effects via docking and high-content drug screening. Molecular BioSystems, 2016, 12, 2713-2721.	2.9	15
263	Novel androgen receptor antagonist identified by structure-based virtual screening, structural optimization, and biological evaluation. European Journal of Medicinal Chemistry, 2020, 192, 112156.	2.6	15
264	The MCR-3 inside linker appears as a facilitator of colistin resistance. Cell Reports, 2021, 35, 109135.	2.9	15
265	Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts. Drug Discovery Today, 2021, 26, 1353-1358.	3.2	15
266	Binding affinity of hydroxamate inhibitors of matrix metalloproteinase-2. Journal of Molecular Modeling, 2004, 10, 112-120.	0.8	14
267	Prediction of Binding Sites of Peptide Recognition Domains: An Application on Grb2 and SAP SH2 Domains. Journal of Molecular Biology, 2006, 357, 1322-1334.	2.0	14
268	Effective band gap reduction of titanium oxide semiconductors by codoping from first-principles calculations. International Journal of Quantum Chemistry, 2013, 113, 2546-2553.	1.0	14
269	Effective increasing of optical absorption of TiO2 by introducing trivalent titanium. Applied Physics Letters, 2013, 102, .	1.5	14
270	Discovery of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridines as potent anaplastic lymphoma kinase (ALK) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 912-916.	1.0	14

#	Article	IF	Citations
271	Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacologica Sinica, 2022, 43, 229-239.	2.8	14
272	High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots–assisted LDI mass spectrometry. Science Advances, 2022, 8, eabl4923.	4.7	14
273	Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics, 2022, 14, 23.	2.8	14
274	Conformational analysis of peptides using Monte Carlo simulations combined with the genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 1999, 45, 347-351.	1.8	13
275	Three-Dimension Quantitative Structure-Activity Relationship Analysis of Some Cinnamamides Using Comparative Molecular Similarity Indices Analysis (CoMSIA). Journal of Molecular Modeling, 2000, 6, 438-445.	0.8	13
276	Characterization of PDZ domainâ€peptide interaction interface based on energetic patterns. Proteins: Structure, Function and Bioinformatics, 2011, 79, 3208-3220.	1.5	13
277	Selectivity and activation of dopamine D3R from molecular dynamics. Journal of Molecular Modeling, 2012, 18, 5051-5063.	0.8	13
278	DFT study of cobalt porphyrin complex for living radical polymerization of olefins. Computational and Theoretical Chemistry, 2012, 1001, 51-59.	1.1	13
279	Platelet Aggregation Pathway Network-Based Approach for Evaluating Compounds Efficacy. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-8.	0.5	13
280	Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. Molecular BioSystems, 2014, 10, 1196-1210.	2.9	13
281	Prediction of Human Clearance Based on Animal Data and Molecular Properties. Chemical Biology and Drug Design, 2015, 86, 990-997.	1.5	13
282	Macrophage migration inhibitory factor (MIF) inhibitor, Z-590 suppresses cartilage destruction in adjuvant-induced arthritis via inhibition of macrophage inflammatory activation. Immunopharmacology and Immunotoxicology, 2018, 40, 149-157.	1.1	13
283	Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discovery Today, 2021, 27, 326-326.	3.2	13
284	A virtual screen identified C96 as a novel inhibitor of phosphatidylinositol 3-kinase that displays potent preclinical activity against multiple myeloma <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2014, 5, 3836-3848.	0.8	13
285	Cyproheptadineâ€induced myeloma cell apoptosis is associated with inhibition of the <scp>PI</scp> 3K/ <scp>AKT</scp> signaling. European Journal of Haematology, 2013, 91, 514-521.	1.1	12
286	Ab initio phononâ€coupled nonadiabatic relaxation dynamics of [Au 25 (SH) 18] â^ clusters. Physica Status Solidi (B): Basic Research, 2016, 253, 458-462.	0.7	12
287	Benchmark Study Based on 2P2I _{DB} to Gain Insights into the Discovery of Small-Molecule PPI Inhibitors. Journal of Physical Chemistry B, 2018, 122, 2544-2555.	1.2	12
288	<p>Identification of an Activating Mutation in the Extracellular Domain of HER2 Conferring Resistance to Pertuzumab</p> . OncoTargets and Therapy, 2019, Volume 12, 11597-11608.	1.0	12

#	Article	IF	Citations
289	Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127170.	1.0	12
290	Computational Bioactivity Fingerprint Similarities To Navigate the Discovery of Novel Scaffolds. Journal of Medicinal Chemistry, 2021, 64, 7544-7554.	2.9	12
291	Regulation Mechanism for the Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. Journal of Physical Chemistry Letters, 2021, 12, 6252-6261.	2.1	12
292	TocoDecoy: A New Approach to Design Unbiased Datasets for Training and Benchmarking Machine-Learning Scoring Functions. Journal of Medicinal Chemistry, 2022, 65, 7918-7932.	2.9	12
293	Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics. Journal of Computer-Aided Molecular Design, 2002, 16, 27-41.	1.3	11
294	An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model. Journal of Molecular Modeling, 2005, 11, 26-40.	0.8	11
295	Design, synthesis, and biological evaluation of novel 2-methylpiperazine derivatives as potent CCR5 antagonists. Bioorganic and Medicinal Chemistry, 2015, 23, 1157-1168.	1.4	11
296	DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine's p53-dependent synergistic anti-tumor efficiency with melphalan. Cancer Letters, 2016, 383, 115-124.	3.2	11
297	Structure-Based Development of Antagonists for Chemokine Receptor CXCR4. Current Computer-Aided Drug Design, 2013, 9, 60-75.	0.8	11
298	Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays. Acta Pharmacologica Sinica, 2022, 43, 2429-2438.	2.8	11
299	Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism. Journal of Chemical Information and Modeling, 2022, 62, 2973-2986.	2.5	11
300	The structures and properties of Si/SiO2 core/shell quantum dots studied by density-functional tight-binding calculations. Applied Physics Letters, 2013, 103, 123115.	1.5	10
301	Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations. RSC Advances, 2018, 8, 13997-14008.	1.7	10
302	Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays. Acta Pharmacologica Sinica, 2022, 43, 1508-1520.	2.8	10
303	QSAR-assisted-MMPA to expand chemical transformation space for lead optimization. Briefings in Bioinformatics, 2021, 22, .	3.2	10
304	Characterizing the stabilization effects of stabilizers in protein–protein systems with end-point binding free energy calculations. Briefings in Bioinformatics, 2022, 23, .	3.2	10
305	Theoretical studies on force titration of amino-group-terminated self-assembled monolayers. Computational and Theoretical Chemistry, 1998, 451, 295-303.	1.5	9
306	Cysteineâ€independent polymerization of metallothioneins in solutions and in crystals. Protein Science, 2000, 9, 2302-2312.	3.1	9

#	Article	IF	Citations
307	The localization and adsorption of benzene and propylene in ITQ-1 zeolite: grand canonical Monte Carlo simulations. Computational and Theoretical Chemistry, 2001, 535, 9-23.	1.5	9
308	Investigation on photophysical properties of a substituted 3H-indole-modified \hat{l}^2 -cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 174-180.	2.0	9
309	Exploring Old Drugs for the Treatment of Hematological Malignancies. Current Medicinal Chemistry, 2011, 18, 1509-1514.	1.2	9
310	Identification and Preliminary SAR Analysis of Novel Type-I Inhibitors of TIE-2 via Structure-Based Virtual Screening and Biological Evaluation in in vitro Models. Journal of Chemical Information and Modeling, 2015, 55, 2693-2704.	2.5	9
311	The prediction of the morphology and PCE of small molecular organic solar cells. RSC Advances, 2015, 5, 70939-70948.	1.7	9
312	Characterising the morphology and efficiency of polymer solar cell by experiments and simulations. Molecular Simulation, 2016, 42, 836-845.	0.9	9
313	Exploring the RNAâ€bound and RNAâ€free human Argonauteâ€2 by molecular dynamics simulation method. Chemical Biology and Drug Design, 2017, 90, 753-763.	1.5	9
314	Fast and accurate prediction of partial charges using Atom-Path-Descriptor-based machine learning. Bioinformatics, 2020, 36, 4721-4728.	1.8	9
315	Binding affinity and dissociation pathway predictions for a series of USP7 inhibitors with pyrimidinone scaffold by multiple computational methods. Physical Chemistry Chemical Physics, 2020, 22, 5487-5499.	1.3	9
316	Discovery of novel HBV capsid assembly modulators by structure-based virtual screening and bioassays. Bioorganic and Medicinal Chemistry, 2021, 36, 116096.	1.4	9
317	Comprehensive assessment of deep generative architectures for <i>de novo</i> drug design. Briefings in Bioinformatics, 2022, 23, .	3.2	9
318	Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach. Acta Pharmaceutica Sinica B, 2023, 13, 54-67.	5.7	9
319	Some Basic Data Structures and Algorithms for Chemical Generic Programming. Journal of Chemical Information and Computer Sciences, 2004, 44, 1571-1575.	2.8	8
320	Optimal parameters for morphology of bulk heterojunction solar cells from simulations. Applied Physics Letters, 2012, 100, 053307.	1.5	8
321	BioMedR: an R/CRAN package for integrated data analysis pipeline in biomedical study. Briefings in Bioinformatics, 2021, 22, 474-484.	3.2	8
322	ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions. Journal of Cheminformatics, 2021, 13, 6.	2.8	8
323	Discovery of <i>N</i> -(4-(Benzyloxy)-phenyl)-sulfonamide Derivatives as Novel Antagonists of the Human Androgen Receptor Targeting the Activation Function 2. Journal of Medicinal Chemistry, 2022, 65, 2507-2521.	2.9	8
324	Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure- and IGN-based virtual screening, structural optimization, and biological evaluation. European Journal of Medicinal Chemistry, 2022, 237, 114382.	2.6	8

#	Article	IF	Citations
325	Automated docking of peptides and proteins by genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 1999, 45, 281-286.	1.8	7
326	Three-dimensional quantitative structure–activity relationship study on paullones as CDK inhibitors using CoMSIA and CoMFA. Journal of Molecular Modeling, 2001, 7, 223-230.	0.8	7
327	A new molecular simulation software package – Peking University Drug Design System (PKUDDS) for structure-based drug design. Journal of Molecular Graphics and Modelling, 2001, 19, 455-465.	1.3	7
328	New Born Radii Deriving Method for Generalized Born Model. Journal of Chemical Information and Modeling, 2005, 45, 88-93.	2.5	7
329	Insight Derived from Molecular Dynamics Simulation into the Selectivity Mechanism Targeting <i>c-MYC</i> G-Quadruplex. Journal of Physical Chemistry B, 2020, 124, 9773-9784.	1.2	7
330	Discovery of a Novel <i>Fusarium Graminearum</i> Mitogen-Activated Protein Kinase (FgGpmk1) Inhibitor for the Treatment of Fusarium Head Blight. Journal of Medicinal Chemistry, 2021, 64, 13841-13852.	2.9	7
331	Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers. Journal of Medicinal Chemistry, 2021, 64, 17221-17238.	2.9	7
332	Out-of-the-box deep learning prediction of quantum-mechanical partial charges by graph representation and transfer learning. Briefings in Bioinformatics, 2022, 23, .	3.2	7
333	ABC-Net: a divide-and-conquer based deep learning architecture for SMILES recognition from molecular images. Briefings in Bioinformatics, 2022, 23, .	3.2	7
334	The adsorption of a series of aromatics in ITQ-1: grand canonical Monte Carlo simulations. Journal of Molecular Catalysis A, 2001, 171, 103-114.	4.8	6
335	On the detection of functionally coherent groups of protein domains with an extension to protein annotation. BMC Bioinformatics, 2007, 8, 390.	1.2	6
336	Accelerated Conformational Entropy Calculations Using Graphic Processing Units. Journal of Chemical Information and Modeling, 2013, 53, 2057-2064.	2.5	6
337	Structure–Activity Relationships and Anti-inflammatory Activities of <i>N</i> -Carbamothioylformamide Analogues as MIF Tautomerase Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 1994-2004.	2.5	6
338	Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations. Journal of Chemical Theory and Computation, 2017, 13, 1827-1836.	2.3	6
339	PySmash: Python package and individual executable program for representative substructure generation and application. Briefings in Bioinformatics, 2021, 22, .	3.2	6
340	Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening. Acta Pharmacologica Sinica, 2022, 43, 1605-1615.	2.8	6
341	Novel Caspase-1 inhibitor CZL80 improves neurological function in mice after progressive ischemic stroke within a long therapeutic time-window. Acta Pharmacologica Sinica, 2022, 43, 2817-2827.	2.8	6
342	The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays. Protein Engineering, Design and Selection, 2011, 24, 333-339.	1.0	5

#	Article	IF	CITATIONS
343	Density Functional Calculations on Silicon Carbide Nanostructures. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1980-1998.	0.4	5
344	Editorial. Advanced Drug Delivery Reviews, 2015, 86, 1.	6.6	5
345	Two-dimensional porous polyphthalocyanine (PPc) as an efficient gas-separation membrane for ammonia synthesis. Current Applied Physics, 2017, 17, 1765-1770.	1.1	5
346	Molecular View on the Dissociation Pathways and Transactivation Regulation Mechanism of Nonsteroidal GR Ligands. Journal of Chemical Information and Modeling, 2022, 62, 5233-5245.	2.5	5
347	Inhibition of neuroinflammation by MIF inhibitor 3-({[4-(4-methoxyphenyl)-6-methyl-2-pyrimidinyl]thio}1methyl)benzoic acid (Z-312). International Immunopharmacology, 2021, 98, 107868.	1.7	5
348	Exploring Low-Toxicity Chemical Space with Deep Learning for Molecular Generation. Journal of Chemical Information and Modeling, 0, , .	2.5	5
349	Transport of nucleosides in the vcCNT facilitated by sodium gradients from molecular dynamics simulations. Molecular BioSystems, 2013, 9, 2142.	2.9	4
350	Atomistic structures and phase transition of In2Se3 nanowires studied by DFT calculations and synchrotron radiation X-ray diffraction. Solid State Communications, 2013, 162, 28-33.	0.9	4
351	When Modern Technology Meets Ancient Traditional Chinese Medicine. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-2.	0.5	4
352	In Silico Exploration for Novel Type-I Inhibitors of Tie-2/TEK: The Performance of Different Selection Strategy in Selecting Virtual Screening Candidates. Scientific Reports, 2016, 6, 37628.	1.6	4
353	Atomistic molecular dynamics simulations of <scp>ATP</scp> â€binding cassette transporters. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 255-265.	6.2	4
354	ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds. Briefings in Bioinformatics, 2021, 22, .	3.2	4
355	<i>DeepChargePredictor</i> : a web server for predicting QM-based atomic charges via <i>state-of-the-art</i> machine-learning algorithms. Bioinformatics, 2021, 37, 4255-4257.	1.8	4
356	Editorial [Hot topic: In Silico Predictions of ADME/T Properties: Progress and Challenges (Guest) Tj ETQq0 0 0 rgBT	Overlock	₹ 3 0 Tf 50 22
357	Semi-automated workflow for molecular pair analysis and QSAR-assisted transformation space expansion. Journal of Cheminformatics, 2021, 13, 86.	2.8	3
358	Mapping the Binding Site of a Large Set of Quinazoline Type EGF-R Inhibitors Using Molecular Field Analyses and Molecular Docking Studies ChemInform, 2003, 34, no.	0.1	2
359	Structure-Based Drug Design for Dopamine D3 Receptor. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 775-791.	0.6	2
360	Representation of molecular electrostatic potentials of biopolymer by selfâ€organizing feature map. Chinese Journal of Chemistry, 2001, 19, 1172-1178.	2.6	1

#	Article	IF	Citations
361	Band gap modulation of Si-C binary core/shell nanowires by composition and ratio. Nanotechnology, 2015, 26, 275201.	1.3	1
362	A comparison of three heuristic algorithms for molecular docking., 2002,, 65-68.		1
363	Pterostilbene inhibits hepatocellular carcinoma proliferation and HBV replication by targeting ribonucleotide reductase M2 protein. American Journal of Cancer Research, 2021, 11, 2975-2989.	1.4	1
364	New Born Radii Deriving Method for Generalized Born Model ChemInform, 2005, 36, no.	0.1	0
365	Correction to Application of Molecular Dynamics Simulations in Molecular Property Prediction. 1. Density and Heat of Vaporization. Journal of Chemical Theory and Computation, 2011, 7, 2333-2333.	2.3	0
366	Structure-Based Development of Antagonists for Chemokine Receptor CXCR4. Current Computer-Aided Drug Design, 2013, 9, 60-75.	0.8	0
367	MORT: a powerful foundational library for computational biology and CADD. Journal of Cheminformatics, 2014, 6, .	2.8	0
368	Cover Image, Volume 39, Issue 5. Medicinal Research Reviews, 2019, 39, i-i.	5.0	0
369	Cover Image, Volume 11, Issue 3. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1533.	6.2	0
370	Characterizing the Morphology and Efficiency of Organic Solar Cells by Multiscale Simulations. Springer Series in Materials Science, 2021, , 679-692.	0.4	0
371	QSAR of Pyrazole Oxadiazole Derivatives as $\rm s1p1$ Agonists Studied by CoMFA, CoMSIA and Docking. Letters in Drug Design and Discovery, 2013, 10, 836-852.	0.4	0
372	A Novel PI3K Inhibitor Identified By a High Throughput Virtual Screen Displays Potent Activity Against Multiple Myeloma. Blood, 2014, 124, 4722-4722.	0.6	0
373	Molecular modeling of the three-dimensional structure of the human interleukin-11., 2002, , 51-54.		O