
Hyoung-Gon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10653693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9090-9103.	1.7	1,003
2	Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1240-1247.	1.8	982
3	Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 419-429.	2.1	422
4	Oxidative stress signalling in Alzheimer's disease. Brain Research, 2004, 1000, 32-39.	1.1	377
5	The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer's Disease. NeuroSignals, 2002, 11, 270-281.	0.5	336
6	Modulation of Hippocampal Plasticity and Cognitive Behavior by Short-term Blueberry Supplementation in Aged Rats. Nutritional Neuroscience, 2004, 7, 309-316.	1.5	272
7	Role of metal dyshomeostasis in Alzheimer's disease. Metallomics, 2011, 3, 267.	1.0	267
8	Alzheimer disease, the two-hit hypothesis: An update. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 494-502.	1.8	251
9	Tau phosphorylation in Alzheimer's disease: pathogen or protector?. Trends in Molecular Medicine, 2005, 11, 164-169.	3.5	224
10	The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2011, 10, 275-279.	4.9	197
11	From Aging to Alzheimer's Disease: Unveiling "The Switch―with the Senescence-Accelerated Mouse Model (SAMP8). Journal of Alzheimer's Disease, 2008, 15, 615-624.	1.2	177
12	Challenging the Amyloid Cascade Hypothesis: Senile Plaques and Amyloid-β as Protective Adaptations to Alzheimer Disease. Annals of the New York Academy of Sciences, 2004, 1019, 1-4.	1.8	169
13	Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe?. Acta Neuropathologica, 2003, 105, 524-528.	3.9	155
14	Alzheimer Disease Pathology As a Host Response. Journal of Neuropathology and Experimental Neurology, 2008, 67, 523-531.	0.9	150
15	4-Oxo-2-nonenal Is Both More Neurotoxic and More Protein Reactive than 4-Hydroxy-2-nonenal. Chemical Research in Toxicology, 2005, 18, 1219-1231.	1.7	147
16	Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 467-472.	1.8	147
17	Amyloid-β in Alzheimer Disease: The Null versus the Alternate Hypotheses. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 823-829.	1.3	144
18	Current approaches in the treatment of Alzheimer's disease. Biomedicine and Pharmacotherapy, 2008, 62, 199-207.	2.5	139

#	Article	IF	CITATIONS
19	Reexamining Alzheimer's Disease: Evidence for a Protective Role for Amyloid-β Protein Precursor and Amyloid-β. Journal of Alzheimer's Disease, 2009, 18, 447-452.	1.2	139
20	Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age, 2008, 30, 209-215.	3.0	133
21	Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathologica, 2006, 111, 503-509.	3.9	127
22	Oxidative Imbalance in Alzheimer's Disease. Molecular Neurobiology, 2005, 31, 205-218.	1.9	126
23	Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2009, 54, 84-88.	1.9	125
24	Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition. Neurobiology of Aging, 2014, 35, 793-801.	1.5	114
25	Cellular prion protein is essential for oligomeric amyloid-Â-induced neuronal cell death. Human Molecular Genetics, 2012, 21, 1138-1144.	1.4	105
26	Amyloid Beta: The Alternate Hypothesis. Current Alzheimer Research, 2006, 3, 75-80.	0.7	99
27	Signal Transduction Cascades Associated with Oxidative Stress in Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 11, 143-152.	1.2	95
28	Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neuroscience Bulletin, 2014, 30, 243-252.	1.5	95
29	Posttranslational modifications of α-tubulin in alzheimer disease. Translational Neurodegeneration, 2015, 4, 9.	3.6	88
30	Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer's disease from tauopathies. Biosensors and Bioelectronics, 2017, 98, 54-61.	5.3	83
31	The Neuronal Expression of MYC Causes a Neurodegenerative Phenotype in a Novel Transgenic Mouse. American Journal of Pathology, 2009, 174, 891-897.	1.9	82
32	Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation. PLoS ONE, 2016, 11, e0151615.	1.1	81
33	Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Reviews in Molecular Medicine, 2010, 12, e19.	1.6	77
34	Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Molecular Neurodegeneration, 2018, 13, 5.	4.4	77
35	Cell Cycle Deregulation in the Neurons of Alzheimer's Disease. Results and Problems in Cell Differentiation, 2011, 53, 565-576.	0.2	71
36	Ectopic expression of phospho-Smad2 in Alzheimer's disease: Uncoupling of the transforming growth factor-β pathway?. Journal of Neuroscience Research, 2006, 84, 1856-1861.	1.3	68

#	Article	IF	CITATIONS
37	Oxidative Stress and Neuronal Adaptation in Alzheimer Disease: The Role of SAPK Pathways. Antioxidants and Redox Signaling, 2003, 5, 571-576.	2.5	67
38	Antioxidant protection and neurodegenerative disease: The role of amyloid-β and tau. American Journal of Alzheimer's Disease and Other Dementias, 2006, 21, 126-130.	0.9	61
39	Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis. Expert Review of Neurotherapeutics, 2010, 10, 683-691.	1.4	61
40	Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathologica, 2004, 107, 365-371.	3.9	60
41	Biomarkers in Alzheimer's disease: past, present and future. Biomarkers in Medicine, 2010, 4, 15-26.	0.6	57
42	Perspectives on the Amyloid-β Cascade Hypothesis. Journal of Alzheimer's Disease, 2004, 6, 137-145.	1.2	56
43	BRCA1 May Modulate Neuronal Cell Cycle Re-Entry in Alzheimer Disease. International Journal of Medical Sciences, 2007, 4, 140-145.	1.1	56
44	Distribution, levels, and activation of MEK1 in Alzheimer's disease. Journal of Neurochemistry, 2004, 86, 136-142.	2.1	55
45	Neuroprotective properties of Bcl-w in Alzheimer disease. Journal of Neurochemistry, 2004, 89, 1233-1240.	2.1	54
46	Amyloid-β in Alzheimer's disease: the horse or the cart? Pathogenic or protective?. International Journal of Experimental Pathology, 2005, 86, 133-138.	0.6	54
47	Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity. PLoS ONE, 2012, 7, e28033.	1.1	54
48	Aberrant localization of importin α1 in hippocampal neurons in Alzheimer disease. Brain Research, 2006, 1124, 1-4.	1.1	51
49	Direct and Indirect Roles of Cyclin-dependent Kinase 5 as an Upstream Regulator in the c-Jun NH ₂ -Terminal Kinase Cascade: Relevance to Neurotoxic Insults in Alzheimer's Disease. Molecular Biology of the Cell, 2009, 20, 4611-4619.	0.9	50
50	Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radical Research, 2012, 46, 565-576.	1.5	46
51	P38 Activation Mediates Amyloid-β Cytotoxicity. Neurochemical Research, 2005, 30, 791-796.	1.6	43
52	Molecular Pathogenesis of Alzheimer's Disease: Reductionist versus Expansionist Approaches. International Journal of Molecular Sciences, 2009, 10, 1386-1406.	1.8	43
53	Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochemical Society Transactions, 2017, 45, 1053-1066.	1.6	43
54	Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees?. Expert Review of Neurotherapeutics, 2007, 7, 473-485.	1.4	41

#	Article	IF	CITATIONS
55	Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure. PLoS ONE, 2009, 4, e7172.	1.1	41
56	Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer's disease. Aging, 2011, 3, 846-851.	1.4	39
57	The effect of mGluR2 activation on signal transduction pathways and neuronal cell survival. Brain Research, 2009, 1249, 244-250.	1.1	37
58	The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2004, 64, 89-98.	0.4	36
59	Differential Regulation of Glutamate Receptors in Alzheimer's Disease. NeuroSignals, 2002, 11, 282-292.	0.5	34
60	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	4.4	34
61	The Cell Cycle Regulator Phosphorylated Retinoblastoma Protein Is Associated With Tau Pathology in Several Tauopathies. Journal of Neuropathology and Experimental Neurology, 2011, 70, 578-587.	0.9	32
62	Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 23.	4.4	32
63	Mitogen- and stress-activated protein kinase 1: Convergence of the ERK and p38 pathways in Alzheimer's disease. Journal of Neuroscience Research, 2005, 79, 554-560.	1.3	30
64	Emerging evidence for the neuroprotective role of α-synuclein. Experimental Neurology, 2006, 200, 1-7.	2.0	30
65	The Mitochondrial Dynamics of Alzheimers Disease and Parkinsons Disease Offer Important Opportunities for Therapeutic Intervention. Current Pharmaceutical Design, 2011, 17, 3374-3380.	0.9	30
66	Neuronal Cell Cycle Re-Entry Markers are Altered in the Senescence Accelerated Mouse P8 (SAMP8). Journal of Alzheimer's Disease, 2012, 30, 573-583.	1.2	27
67	Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Human Molecular Genetics, 2017, 26, 1376-1390.	1.4	26
68	Regulation of RhoA activity by the cellular prion protein. Cell Death and Disease, 2017, 8, e2668-e2668.	2.7	26
69	Novel therapeutics for Alzheimer's disease: an update. Current Opinion in Drug Discovery & Development, 2010, 13, 235-46.	1.9	26
70	Will Preventing Protein Aggregates Live Up to Its Promise as Prophylaxis Against Neurodegenerative Diseases?. Brain Pathology, 2003, 13, 630-638.	2.1	24
71	Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 134-46.	0.5	24
72	Modification of Amyloid-β1-42 Fibril Structure by Methionine-35 Oxidation. Journal of Alzheimer's Disease, 2013, 37, 9-18.	1.2	22

#	Article	IF	CITATIONS
73	Amyloid-β Vaccination: Testing the Amyloid Hypothesis?. American Journal of Pathology, 2006, 169, 738-739.	1.9	20
74	The (un)balance between metabolic and oxidative abnormalities and cellular compensatory responses in Alzheimer disease. Mechanisms of Ageing and Development, 2006, 127, 501-506.	2.2	19
75	Staying Connected. American Journal of Pathology, 2004, 165, 1461-1464.	1.9	18
76	Widespread distribution of reticulon-3 in various neurodegenerative diseases. Neuropathology, 2010, 30, 574-579.	0.7	18
77	BRG1 and BRM function antagonistically with c-MYC in adult cardiomyocytes to regulate conduction and contractility. Journal of Molecular and Cellular Cardiology, 2017, 105, 99-109.	0.9	18
78	Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cellular and Molecular Biology Letters, 2011, 16, 359-72.	2.7	17
79	Accumulation of Intraneuronal Amyloid-β is Common in Normal Brain. Current Alzheimer Research, 2014, 11, 317-324.	0.7	16
80	The essential role of ERK in 4â€oxoâ€2â€nonenalâ€mediated cytotoxicity in SHâ€SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2009, 108, 1434-1441.	2.1	13
81	The sterol regulatory elementâ€binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathology, 2019, 29, 530-543.	2.1	11
82	In Vitro Seeding Activity of Glycoform-Deficient Prions from Variably Protease-Sensitive Prionopathy and Familial CJD Associated with PrPV180I Mutation. Molecular Neurobiology, 2019, 56, 5456-5469.	1.9	7
83	Presenilin mutation: A deadly first hit in Alzheimer disease. Free Radical Biology and Medicine, 2006, 40, 737-739.	1.3	6
84	Amyloid-β, BACE, and oxidative stress in Alzheimer's disease, a commentary on "The different aggregation state of beta-amyloid 1-42 mediates different effects on oxidative stress, neurodegeneration and BACE-1 expression― Free Radical Biology and Medicine, 2006, 41, 188-189.	1.3	6
85	Neurogenesis in Human Hippocampus: Implications for Alzheimer Disease Pathogenesis. Neuroembryology and Aging, 2006, 4, 175-182.	0.1	4
86	Therapeutic potential of oxidative stress reduction in Alzheimer's disease. Future Neurology, 2006, 1, 1-4.	0.9	4
87	Pathology's new role: defining disease process and protective responses. International Journal of Clinical and Experimental Pathology, 2008, 1, 1-4.	0.5	2
88	The Fallacy of Amyloid and Cognition in Alzheimer???s Disease. Drugs and Aging, 2006, 23, 179.	1.3	1
89	Selective Peripheral Taste Dysfunction in APP/PS1 Mutant Transgenic Mice. Journal of Alzheimer's Disease, 2020, 76, 1-9.	1.2	1
90	Neurodegenerative processes in Alzheimer's disease: an overview of pathogenesis with strategic biomarker potential. Future Neurology, 2011, 6, 173-185.	0.9	0

#	Article	IF	CITATIONS
91	Mark Smith: Pioneer of Alzheimer Disease Research. Neurotoxicity Research, 2012, 22, 181-181.	1.3	Ο
92	Oxidative Stress Associated Signal Transduction Cascades in Alzheimer Disease. Contemporary Clinical Neuroscience, 2009, , 121-136.	0.3	0
93	Oxidative Stress and Alzheimer Disease: Mechanisms and Therapeutic Opportunities. Advances in Neurobiology, 2011, , 607-631.	1.3	0
94	RLipoic Acid as a Potent Agent of Mitochondrial Protectionin Alzheimer's Disease. Oxidative Stress and Disease, 2012, , 455-467.	0.3	0
95	Oxidative Damage is Correlated with Mitochondrial Autophagy. FASEB Journal, 2015, 29, 613.1.	0.2	0