List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10653671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S2kâ€Guidelines – Cutaneous lymphomas (ICD10 C82 ―C86): Update 2021. JDDG - Journal of the German Society of Dermatology, 2022, 20, 537-554.	0.4	8
2	S2kâ€Leitlinie – Kutane Lymphome (ICD10 C82–C86): Update 2021. JDDG - Journal of the German Society of Dermatology, 2022, 20, 537-555.	0.4	10
3	The HDAC Inhibitor Domatinostat Promotes Cell-Cycle Arrest, Induces Apoptosis, and Increases Immunogenicity of Merkel Cell Carcinoma Cells. Journal of Investigative Dermatology, 2021, 141, 903-912.e4.	0.3	31
4	Mutational Landscape of Virus- and UV-Associated Merkel Cell Carcinoma Cell Lines Is Comparable to Tumor Tissue. Cancers, 2021, 13, 649.	1.7	16
5	Classical and Variant Merkel Cell Carcinoma Cell Lines Display Different Degrees of Neuroendocrine Differentiation and Epithelial-Mesenchymal Transition. Journal of Investigative Dermatology, 2021, 141, 1675-1686.e4.	0.3	13
6	High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell Carcinoma reveals distinct integration patterns and suggests NHEJ and MMBIR as underlying mechanisms. PLoS Pathogens, 2020, 16, e1008562.	2.1	24
7	Survival of patients with advanced metastatic melanoma: The impact of MAP kinase pathway inhibition and immune checkpoint inhibition - Update 2019. European Journal of Cancer, 2020, 130, 126-138.	1.3	84
8	Artesunate Affects T Antigen Expression and Survival of Virus-Positive Merkel Cell Carcinoma. Cancers, 2020, 12, 919.	1.7	17
9	S2k‣eitlinie Merkelzellkarzinom (MZK, MCC, neuroendokrines Karzinom der Haut) – Update 2018. JDDG - Journal of the German Society of Dermatology, 2019, 17, 562-577.	0.4	13
10	S2k guidelines for Merkel cell carcinoma (MCC, neuroendocrine carcinoma of the skin) – update 2018. JDDG - Journal of the German Society of Dermatology, 2019, 17, 562-576.	0.4	27
11	Characterization of six Merkel cell polyomavirusâ€positive Merkel cell carcinoma cell lines: Integration pattern suggest that large T antigen truncating events occur before or during integration. International Journal of Cancer, 2019, 145, 1020-1032.	2.3	44
12	Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20104-20114.	3.3	41
13	A shortâ€ŧerm in vivo model for Merkel Cell Carcinoma. Experimental Dermatology, 2018, 27, 684-687.	1.4	8
14	S2kâ€Leitlinie – Kutane Lymphome Update 2016 – Teil 2: Therapie und Nachsorge (ICD10 C82 ―C86). JDDG Journal of the German Society of Dermatology, 2018, 16, 112-123.	0.4	14
15	S2k Guidelines – Cutaneous Lymphomas Update 2016 – Part 2: Treatment and Followâ€up (ICD10 C82 ―C8 JDDG - Journal of the German Society of Dermatology, 2018, 16, 112-122.	³⁶⁾ .4	29
16	Responses to romidepsin in patients with cutaneous T-cell lymphoma and prior treatment with systemic chemotherapy. Leukemia and Lymphoma, 2018, 59, 880-887.	0.6	28
17	Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunology, Immunotherapy, 2018, 67, 341-351.	2.0	88
18	Genomic Landscape of Spitzoid Neoplasms Impacting Patient Management. Frontiers in Medicine, 2018, 5, 344.	1.2	18

#	Article	IF	CITATIONS
19	T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Seminars in Immunopathology, 2017, 39, 255-268.	2.8	65
20	Merkel cell carcinoma: Epidemiology, prognosis, therapy and unmet medical needs. European Journal of Cancer, 2017, 71, 53-69.	1.3	307
21	Merkel cell carcinoma. Nature Reviews Disease Primers, 2017, 3, 17077.	18.1	393
22	Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Scientific Reports, 2016, 6, 21678.	1.6	43
23	Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metabolism, 2016, 23, 554-562.	7.2	572
24	Clinically significant responses achieved with romidepsin across disease compartments in patients with cutaneous T-cell lymphoma. Leukemia and Lymphoma, 2015, 56, 2847-2854.	0.6	17
25	Presence of Human Polyomavirus 6 in Mutation-Specific BRAF Inhibitor–Induced Epithelial Proliferations. JAMA Dermatology, 2014, 150, 1180.	2.0	51
26	Fluorescence <i>in situ</i> hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas. International Journal of Cancer, 2014, 135, 2804-2815.	2.3	13
27	T-cell Responses to Oncogenic Merkel Cell Polyomavirus Proteins Distinguish Patients with Merkel Cell Carcinoma from Healthy Donors. Clinical Cancer Research, 2014, 20, 1768-1778.	3.2	81
28	Downregulation of MHC-I Expression Is Prevalent but Reversible in Merkel Cell Carcinoma. Cancer Immunology Research, 2014, 2, 1071-1079.	1.6	120
29	p53 Regulation by TRP2 Is Not Pervasive in Melanoma. PLoS ONE, 2014, 9, e87440.	1.1	2
30	Immune-suppressive properties of the tumor microenvironment. Cancer Immunology, Immunotherapy, 2013, 62, 1137-1148.	2.0	179
31	Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. International Journal of Cancer, 2013, 132, 2980-2982.	2.3	7
32	Panobinostat activity in both bexarotene-exposed and -naÃ ⁻ ve patients with refractory cutaneous T-cell lymphoma: Results of a phase II trial. European Journal of Cancer, 2013, 49, 386-394.	1.3	124
33	Merkel Cell Polyomavirus–Positive Merkel Cell Carcinoma Cells Do Not Require Expression of the Viral Small T Antigen. Journal of Investigative Dermatology, 2013, 133, 2059-2064.	0.3	41
34	No Evidence for Association of HPyV6 or HPyV7 with Different Skin Cancers. Journal of Investigative Dermatology, 2012, 132, 239-241.	0.3	22
35	Control of Central and Peripheral Tolerance to Melanocyte Differentiation Antigens by GILT. Journal of Investigative Dermatology, 2012, 132, 15-17.	0.3	3
36	Type I and II IFNs Inhibit Merkel Cell Carcinoma via Modulation of the Merkel Cell Polyomavirus T Antigens. Cancer Research, 2012, 72, 2120-2128.	0.4	49

#	Article	IF	CITATIONS
37	Merkel Cell Carcinoma and Merkel Cell Polyomavirus: Evidence for Hit-and-Run Oncogenesis. Journal of Investigative Dermatology, 2012, 132, 254-256.	0.3	53
38	Merkel cell carcinoma. Current Opinion in Oncology, 2012, 24, 141-149.	1.1	95
39	Prospective International Multicenter Phase II Trial of Intravenous Pegylated Liposomal Doxorubicin Monochemotherapy in Patients With Stage IIB, IVA, or IVB Advanced Mycosis Fungoides: Final Results From EORTC 21012. Journal of Clinical Oncology, 2012, 30, 4091-4097.	0.8	94
40	Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. New England Journal of Medicine, 2012, 367, 107-114.	13.9	1,976
41	An intact retinoblastoma proteinâ€binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. International Journal of Cancer, 2012, 130, 847-856.	2.3	179
42	Merkel Cell Polyomavirus. , 2012, , 449-462.		0
43	Germline mutations in BAP1 predispose to melanocytic tumors. Nature Genetics, 2011, 43, 1018-1021.	9.4	662
44	Merkel Cell Polyomavirus Status Is Not Associated with Clinical Course of Merkel Cell Carcinoma. Journal of Investigative Dermatology, 2011, 131, 1631-1638.	0.3	153
45	New Virus Associated With Merkel Cell Carcinoma Development. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 874-880.	2.3	45
46	The Etiology and Epidemiology of Merkel Cell Carcinoma. Current Problems in Cancer, 2010, 34, 14-37.	1.0	151
47	Mouse models for melanoma: a personal perspective. Experimental Dermatology, 2010, 19, 157-164.	1.4	71
48	Merkel Cell Polyomavirus-Infected Merkel Cell Carcinoma Cells Require Expression of Viral T Antigens. Journal of Virology, 2010, 84, 7064-7072.	1.5	386
49	Final Results From a Multicenter, International, Pivotal Study of Romidepsin in Refractory Cutaneous T-Cell Lymphoma. Journal of Clinical Oncology, 2010, 28, 4485-4491.	0.8	604
50	Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus. PLoS Pathogens, 2009, 5, e1000578.	2.1	217
51	Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. International Journal of Cancer, 2009, 125, 1250-1256.	2.3	297
52	ldentification and characterization of survivinâ€derived Hâ€2K ^b â€restricted CTL epitopes. European Journal of Immunology, 2009, 39, 1419-1424.	1.6	18
53	MC Polyomavirus Is Frequently Present in Merkel Cell Carcinoma of European Patients. Journal of Investigative Dermatology, 2009, 129, 248-250.	0.3	307
54	Proliferation Arrest in B-Raf Mutant Melanoma Cell Lines upon MAPK Pathway Activation. Journal of Investigative Dermatology, 2009, 129, 406-414.	0.3	18

#	Article	IF	CITATIONS
55	Melanoma Inhibitor of Apoptosis Protein (ML-IAP) Specific Cytotoxic T Lymphocytes Cross-React with an Epitope from the Auto-Antigen SS56. Journal of Investigative Dermatology, 2009, 129, 1992-1999.	0.3	6
56	Molecular pathogenesis of Merkel cell carcinoma. Experimental Dermatology, 2009, 18, 193-198.	1.4	87
57	Immunological tumor destruction in a murine melanoma model by targeted LTα independent of secondary lymphoid tissue. Cancer Immunology, Immunotherapy, 2008, 57, 85-95.	2.0	54
58	Anti-cancer therapies targeting the tumor stroma. Cancer Immunology, Immunotherapy, 2008, 57, 1-17.	2.0	137
59	Cancer treatment: the combination of vaccination with other therapies. Cancer Immunology, Immunotherapy, 2008, 57, 1735-1743.	2.0	48
60	Merkel cell carcinoma: molecular pathogenesis, clinical features and therapy. JDDG - Journal of the German Society of Dermatology, 2008, 6, 709-719.	0.4	70
61	BRAFV600E mutations in malignant melanoma are associated with increased expressions of BAALC. Journal of Carcinogenesis, 2008, 7, 1.	2.5	17
62	B-RAF and N-RAS Mutations Are Preserved during Short Time In Vitro Propagation and Differentially Impact Prognosis. PLoS ONE, 2007, 2, e236.	1.1	133
63	Anti-vascular endothelial growth factor antibody bevacizumab in conjunction with chemotherapy in metastasising melanoma. Journal of Cancer Research and Clinical Oncology, 2007, 133, 897-901.	1.2	21
64	Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery, 2006, 5, 147-159.	21.5	677
65	Cytotoxic T Cells. Journal of Investigative Dermatology, 2006, 126, 32-41.	0.3	316
66	Tumor stroma-associated antigens for anti-cancer immunotherapy. Cancer Immunology, Immunotherapy, 2006, 55, 481-494.	2.0	42
67	Therapeutic efficacy of tumor-targeted IL2 in LTαâ^'/â^' mice depends on conditioned T cells. Cancer Immunology, Immunotherapy, 2006, 55, 861-866.	2.0	6
68	Molecularly targeted therapy for melanoma. Cancer, 2006, 107, 2317-2327.	2.0	50
69	Regulators of apoptosis: suitable targets for immune therapy of cancer. Nature Reviews Drug Discovery, 2005, 4, 399-409.	21.5	97
70	Absence of mutations in the coding sequence of the potential tumor suppressor 3pK in metastatic melanoma. Journal of Carcinogenesis, 2005, 4, 23.	2.5	3
71	Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine, 2005, 23, 884-889.	1.7	105
72	Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. Journal of Carcinogenesis, 2004, 3, 6.	2.5	258

#	Article	IF	CITATIONS
73	Shift from Systemic to Site-Specific Memory by Tumor-Targeted IL-2. Journal of Immunology, 2004, 172, 5843-5850.	0.4	16
74	Immunogenicity of Constitutively Active V599EBRaf. Cancer Research, 2004, 64, 5456-5460.	0.4	71
75	B-Raf specific antibody responses in melanoma patients. BMC Cancer, 2004, 4, 62.	1.1	21
76	Hypopigmentary Skin Disorders. Drugs, 2004, 64, 89-107.	4.9	37
77	Immunological consequences of the sentinel lymph-node biopsy—lessons from a melanoma patient. Lancet Oncology, The, 2003, 4, 446-447.	5.1	5
78	A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Medicine, 2002, 8, 1369-1375.	15.2	359
79	Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture. European Journal of Immunology, 2002, 32, 122-127.	1.6	38
80	Differential Expression of Inhibitory or Activating CD94/NKG2 Subtypes on MART-1-Reactive T Cells in Vitiligo Versus Melanoma: A Case Report. Journal of Investigative Dermatology, 2002, 118, 595-599.	0.3	16
81	Aggregation of Antigen-Specific T Cells at the Inoculation Site of Mature Dendritic Cells. Journal of Investigative Dermatology, 2002, 119, 1443-1448.	0.3	30
82	Identical T-cell receptor transcripts in multiple melanoma metastases. Cancer Research, 2002, 62, 5664-7.	0.4	6
83	Targeting of Lymphotoxin-α to the Tumor Elicits an Efficient Immune Response Associated with Induction of Peripheral Lymphoid-like Tissue. Immunity, 2001, 14, 111-121.	6.6	170
84	Induction of systemic CTL responses in melanoma patients by dendritic cell vaccination: Cessation of CTL responses is associated with disease progression. International Journal of Cancer, 2001, 94, 820-824.	2.3	42
85	In situ cytokine therapy: redistribution of clonally expanded T cells. European Journal of Immunology, 2001, 31, 250-258.	1.6	18
86	Differential expression of CD28 and CD94 / NKG2 on T cells with identical TCR beta variable regions in primary melanoma and sentinel lymph node. European Journal of Immunology, 2000, 30, 3699-3706.	1.6	27
87	Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Therapy, 2000, 7, 316-323.	2.2	65
88	Comparative delineation of T cell clonotypes in coexisting syngeneic B16 melanoma. Cancer Immunology, Immunotherapy, 2000, 49, 426-432.	2.0	7
89	Accumulation of Identical T Cells in Melanoma and Vitiligo-Like Leukoderma. Journal of Investigative Dermatology, 1999, 113, 1033-1038.	0.3	70
90	Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2. Cancer Immunology, Immunotherapy, 1996, 42, 88-92.	2.0	39

#	Article	IF	CITATIONS
91	Antiphospholipid syndrome associated with immunotherapy for patients with melanoma. Cancer, 1995, 75, 2784-2785.	2.0	46
92	Antiphospholipid syndrome associated with immunotherapy for patients with melanoma. Cancer, 1994, 73, 1621-1624.	2.0	81
93	A member of the melanoma antigen-encoding gene (MAGE) family is expressed in human skin during wound healing. International Journal of Cancer, 1994, 58, 346-348.	2.3	47
94	Prevention of anergy induction in cloned T cells by interleukin 12. Experimental Dermatology, 1994, 3, 283-289.	1.4	7