Gabriele Vedovato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1065309/publications.pdf Version: 2024-02-01

		147566	56606
116	7,071	31	83
papers	citations	h-index	g-index
117	117	117	5118
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescences. Classical and Quantum Gravity, 2022, 39, 045001.	1.5	2
2	Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning. Physical Review D, 2022, 105, .	1.6	9
3	Observing an intermediate-mass black hole GW190521 with minimal assumptions. Physical Review D, 2021, 103, .	1.6	19
4	coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis. SoftwareX, 2021, 14, 100678.	1.2	37
5	Detection of LIGO-Virgo binary black holes in the pair-instability mass gap. Physical Review D, 2021, 104, .	1.6	7
6	Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Physical Review D, 2021, 104, .	1.6	35
7	The search of higher multipole radiation in gravitational waves from compact binary coalescences by a minimally-modelled pipeline. Journal of Physics: Conference Series, 2021, 2156, 012081.	0.3	0
8	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
9	Astrophysical signal consistency test adapted for gravitational-wave transient searches. Physical Review D, 2019, 100, .	1.6	6
10	Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method. Physical Review D, 2019, 100, .	1.6	23
11	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
12	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
13	Enhancing the significance of gravitational wave bursts through signal classification. Classical and Quantum Gravity, 2017, 34, 094003.	1.5	11
14	Search for an Ultralight Scalar Dark Matter Candidate with the AURIGA Detector. Physical Review Letters, 2017, 118, 021302.	2.9	38
15	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
16	On similarity of binary black hole gravitational-wave skymaps: to observe or to wait?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L78-L82.	1.2	7
17	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
18	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427

#	Article	IF	CITATIONS
19	Leveraging waveform complexity for confident detection of gravitational waves. Physical Review D, 2016, 93, .	1.6	42
20	Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Physical Review D, 2016, 93, .	1.6	275
21	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
22	LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS. Astrophysical Journal, 2015, 800, 81.	1.6	51
23	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
24	Regression of environmental noise in LIGO data. Classical and Quantum Gravity, 2015, 32, 165014.	1.5	39
25	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
26	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
27	Investigation on Planck scale physics by the AURIGA gravitational bar detector. New Journal of Physics, 2014, 16, 085012.	1.2	23
28	Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors. Physical Review D, 2014, 90, .	1.6	4
29	C7 multi-messenger astronomy of GW sources. General Relativity and Gravitation, 2014, 46, 1.	0.7	0
30	Sensitivity comparison of searches for binary black hole coalescences with ground-based gravitational-wave detectors. Physical Review D, 2014, 90, .	1.6	11
31	Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Physics, 2013, 9, 71-73.	6.5	102
32	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
33	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
34	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
35	Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 2012, 85, .	1.6	32
36	Multimessenger Sources of Gravitational Waves and High-energy Neutrinos: Science Reach and Analysis Method. Journal of Physics: Conference Series, 2012, 363, 012022.	0.3	3

4

#	Article	IF	CITATIONS
37	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
38	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
39	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
40	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
41	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
42	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
43	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
44	Localization of gravitational wave sources with networks of advanced detectors. Physical Review D, 2011, 83, .	1.6	84
45	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
46	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
47	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
48	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
49	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
50	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
51	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
52	IGEC2: A 17-month search for gravitational wave bursts in 2005–2007. Physical Review D, 2010, 82, .	1.6	19
53	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90

#	Article	IF	CITATIONS
55	Nonequilibrium Steady-State Fluctuations in Actively Cooled Resonators. Physical Review Letters, 2009, 103, 010601.	2.9	56
56	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
57	A burst search for gravitational waves from binary black holes. Classical and Quantum Gravity, 2009, 26, 204004.	1.5	14
58	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
59	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
60	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
61	Feedback Cooling of the Normal Modes of a Massive Electromechanical System to Submillikelvin Temperature. Physical Review Letters, 2008, 101, 033601.	2.9	56
62	Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D, 2007, 76, .	1.6	50
63	3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors. Physical Review Letters, 2005, 94, .	2.9	56
64	Upper Limits on Gravitational-Wave Emission in Association with the 27ÂDecÂ2004 Giant Flare of SGR1806-20. Physical Review Letters, 2005, 95, 081103.	2.9	19
65	Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D, 2003, 68, .	1.6	90
66	Parametric adaptive filtering and data validation in the bar GW detector AURIGA. Classical and Quantum Gravity, 2002, 19, 1457-1464.	1.5	11
67	IGEC toolbox for coincidence search. Classical and Quantum Gravity, 2002, 19, 1541-1546.	1.5	6
68	Search for gravitational wave bursts by the network of resonant detectors. Classical and Quantum Gravity, 2002, 19, 1367-1375.	1.5	9
69	Status report and near future prospects for the gravitational wave detector AURICA. Classical and Quantum Gravity, 2002, 19, 1925-1933.	1.5	45
70	Single and multinucleon antiproton–4He annihilation at rest. Nuclear Physics A, 2002, 700, 159-192.	0.6	17
71	Correlation between gamma-ray bursts and gravitational waves. Physical Review D, 2001, 63, .	1.6	12
72	INITIAL OPERATION OF THE INTERNATIONAL GRAVITATIONAL EVENT COLLABORATION. International Journal of Modern Physics D, 2000, 09, 237-245.	0.9	18

#	Article	IF	CITATIONS
73	First Search for Gravitational Wave Bursts with a Network of Detectors. Physical Review Letters, 2000, 85, 5046-5050.	2.9	95
74	χ2testing of optimal filters for gravitational wave signals: An experimental implementation. Physical Review D, 2000, 61, .	1.6	16
75	ON-LINE CONSISTENCY TESTS FOR BAR DETECTORS. International Journal of Modern Physics D, 2000, 09, 251-255.	0.9	3
76	Light baryon production in binary annihilation reactions at rest. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 460, 248-255.	1.5	4
77	The gravitational wave burst observatory: Present state and future perspectives. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 537-544.	0.5	2
78	Study of thef0(1500)/f2(1565)production in the exclusive annihilationnÌ"p→π+Ï€+Ï€â^'in flight. Physical Review D, 1998, 57, 55-66.	1.6	21
79	Timing with resonant gravitational wave detectors: An experimental test. Physical Review D, 1998, 57, 2045-2050.	1.6	6
80	The ultracryogenic gravitational-wave detector AURIGA. Classical and Quantum Gravity, 1997, 14, 1491-1494.	1.5	73
81	Sub-Millisecond Absolute Timing: Toward an Actual Gravitational Observatory. Modern Physics Letters A, 1997, 12, 2261-2264.	0.5	1
82	New data on Δ++-baryon production in annihilation at rest. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 403, 177-184.	1.5	8
83	Results on spin-parity analysis of nÌ"p → Ï€+Ï€â^'Ï€+ in flight. Nuclear Physics, Section B, Proceedings Supplements, 1997, 56, 160-165.	0.5	Ο
84	Spin-parity analysis of the final state Ï€+Ï€â~Ï€0 from annihilation at rest in hydrogen targets at three densities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 408, 476-486.	1.5	27
85	Fast numerical data analysis for resonant gravitational wave antennas and antennas arrays: Optimal filtering, signal timing and internal vetoes. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 104-106.	0.5	7
86	p̄p annihilation cross section at very low energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 369, 77-85.	1.5	66
87	Protonium annihilation into KSKL at three different target densities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 386, 486-494.	1.5	16
88	Optimal reconstruction of the input signal in resonant gravitational wave detectors: Data processing algorithm and physical limitations. Physical Review D, 1994, 50, 4737-4743.	1.6	6
89	Measurement of the frequency of the annihilation reaction p → ππ at rest in a NTP hydrogen target. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 337, 226-234.	1.5	13
90	An experimental study of antiproton-4He annihilation at rest. Nuclear Physics A, 1994, 569, 761-790.	0.6	15

#	Article	IF	CITATIONS
91	Annihilation cross-sections of antineutrons on C, Al, Cu, Sn and Pb at low momenta (180–280 MeV/c) with the OBELIX spectrometer. Il Nuovo Cimento A, 1994, 107, 943-953.	0.2	13
92	A new measurement of the Pontecorvo reaction with the OBELIX spectrometer at LEAR. Nuclear Physics A, 1993, 562, 617-643.	0.6	15
93	Nuclear physics with OBELIX. Nuclear Physics A, 1993, 558, 369-381.	0.6	4
94	New results on meson spectroscopy from Obelix. Nuclear Physics A, 1993, 558, 13-26.	0.6	29
95	First results on nuclear physics with antineutrons by the OBELIX spectrometer. Nuclear Physics A, 1993, 553, 651-654.	0.6	1
96	Antiproton stopping power in hydrogen below 120 keV and the Barkas effect. Physical Review A, 1993, 47, 4517-4520.	1.0	44
97	Performances of the Obelix event builder and producer. IEEE Transactions on Nuclear Science, 1993, 40, 598-602.	1.2	Ο
98	The transputer based GA.SP data acquisition system. IEEE Transactions on Nuclear Science, 1992, 39, 103-108.	1.2	3
99	The micro spiral projection chamber (μSPC). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315, 74-76.	0.7	0
100	A logarithmic detection system for nuclear physics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315, 109-112.	0.7	7
101	A measurement of the ratio from annihilation in deuterium and hydrogen gas. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 284, 448-452.	1.5	16
102	Meson spectroscopy with antineutrons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 287, 368-374.	1.5	39
103	Protonium annihilation in P-wave using low-density (ϱ/αâ^¼10â^'3) hydrogen targets. Measurements of cascade times and widths. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 285, 15-20.	1.5	20
104	The 4 pi cylindrical detector SPC/XDC for X-ray and charged particles detection in antiproton annihilations in the OBELIX experiment at LEAR. IEEE Transactions on Nuclear Science, 1991, 38, 124-127.	1.2	10
105	A high energy physics run control system based on an object oriented approach. IEEE Transactions on Nuclear Science, 1991, 38, 311-315.	1.2	4
106	The data acquisition system for the OBELIX central detector. IEEE Transactions on Nuclear Science, 1991, 38, 337-343.	1.2	0
107	The VME based OBELIX TOF on-line system. IEEE Transactions on Nuclear Science, 1990, 37, 315-319.	1.2	7
108	A VME multiprocessor system for online data analysis of nuclear physics experiments. IEEE Transactions on Nuclear Science, 1990, 37, 1222-1229.	1.2	7

#	Article	IF	CITATIONS
109	MANDA system: A VME data acquisition system for nuclear physics experiments. IEEE Transactions on Nuclear Science, 1989, 36, 697-701.	1.2	4
110	Pair production in the field of a monopole with nonconserved quantum numbers. Zeitschrift Für Physik C-Particles and Fields, 1985, 27, 377-384.	1.5	3
111	Nucleon decay induced by GUT monopole and possible nonconservation of charge. Zeitschrift Für Physik C-Particles and Fields, 1985, 29, 111-114.	1.5	2
112	The Data Acquisition System For The OBELIX Central Detector. , 0, , .		0
113	A 64 Mbyte VME Histogramming Memory Card For The GA.SP gamma spectrometer. , 0, , .		2
114	A High Energy Physics Run Control System Based On An Object Oriented Approach. , 0, , .		0
115	Performances of the Obelix event builder and producer. , 0, , .		0
116	Parallel data processing in GA.SP data acquisition system. , 0, , .		0