
Fred Lubben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10653074/publications.pdf Version: 2024-02-01

FDED LUBBEN

#	Article	IF	CITATIONS
1	Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 2007, 91, 347-370.	3.0	361
2	Children's ideas about the reliability of experimental data. International Journal of Science Education, 1996, 18, 955-968.	1.9	101
3	Investigating in the school science laboratory: conceptual and procedural knowledge and their influence on performance. Research Papers in Education, 1994, 9, 207-248.	3.0	95
4	Talking Science: The research evidence on the use of small group discussions in science teaching. International Journal of Science Education, 2010, 32, 69-95.	1.9	95
5	The development of first year physics students' ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 2001, 23, 1137-1156.	1.9	93
6	Firstâ€year physics students' perceptions of the quality of experimental measurements. International Journal of Science Education, 1998, 20, 447-459.	1.9	76
7	Systematic reviews of research in science education: rigour or rigidity?. International Journal of Science Education, 2005, 27, 387-406.	1.9	68
8	Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 2001, 85, 311-327.	3.0	64
9	Learning science through contexts: helping pupils make sense of everyday situations. International Journal of Science Education, 2000, 22, 239-252.	1.9	61
10	Impact of a conventional introductory laboratory course on the understanding of measurement. Physical Review Physics Education Research, 2008, 4, .	1.7	52
11	Facilitating teachers' professional growth through their involvement in creating context-based materials in science. International Journal of Educational Development, 2002, 22, 659-672.	2.7	47
12	Teaching Measurement in the Introductory Physics Laboratory. Physics Teacher, 2003, 41, 394-401.	0.3	41
13	Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory. European Journal of Physics, 2008, 29, 647-659.	0.6	37
14	The Role of Everyday Contexts in Learnerâ€centred Teaching: The practice in Namibian secondary schools. International Journal of Science Education, 2005, 27, 1805-1823.	1.9	33
15	Profiles of freshman physics students' views on the nature of science. Journal of Research in Science Teaching, 2009, 46, 248-264.	3.3	33
16	Contextualizing science teaching in Swaziland: some student reactions. International Journal of Science Education, 1996, 18, 311-320.	1.9	32
17	Teaching Measurement and Uncertainty the GUM Way. Physics Teacher, 2008, 46, 539-543.	0.3	32
18	Gauging Students' Untutored Ability in Argumentation about Experimental Data: A South African case study. International Journal of Science Education, 2010, 32, 2143-2166.	1.9	30

Fred Lubben

#	Article	IF	CITATIONS
19	The communication of laboratory investigations by university entrants. Journal of Research in Science Teaching, 2000, 37, 839-853.	3.3	28
20	South African teachers' ability to argue: The emergence of inclusive argumentation. International Journal of Educational Development, 2008, 28, 21-34.	2.7	27
21	Students' use of cultural metaphors and their scientific understandings related to heating. Science Education, 1999, 83, 761-774.	3.0	25
22	The Relationship between Students' Views of the Nature of Science and their Views of the Nature of Scientific Measurement. International Journal of Science Education, 2009, 31, 1137-1156.	1.9	24
23	Teachers' Use of Textbooks: Practice in Namibian science classrooms. Educational Studies, 2003, 29, 109-125.	2.4	17
24	What do Underprepared Students Learn about Measurement from Introductory Laboratory Work?. Research in Science Education, 2002, 32, 1-18.	2.3	13
25	Liked and Disliked Learning Activities: responses of Swazi students to science materials with a technological approach. Research in Science and Technological Education, 1996, 14, 221-235.	2.5	9
26	Title is missing!. Research in Science Education, 2001, 31, 553-573.	2.3	9
27	Swazi Teachers' Views on the Use of Cultural Knowledge for Integrating Education for Sustainable Development into Science Teaching. African Journal of Research in Mathematics, Science and Technology Education, 2011, 15, 68-83.	1.0	9
28	Development and application of a model for students' decision-making in laboratory work. African Journal of Research in Mathematics, Science and Technology Education, 2004, 8, 13-27.	1.0	7
29	Science Curriculum Material Development through a Teacherâ€Industrialist Partnership: industrialists' perceptions of their role. Research in Science and Technological Education, 1998, 16, 217-230.	2.5	5
30	First year university students' understanding of validity in designing a physics experiment. African Journal of Research in Mathematics, Science and Technology Education, 2008, 12, 33-54.	1.0	3
31	Point and Set Paradigms in Students' Handling of Experimental Measurements. , 2001, , 331-336.		3
32	Investigative work in science the role of prior expectations and evidence in shaping conclusions. Education 3-13, 1996, 24, 28-34.	1.0	2
33	Experimental Work in Science. , 2010, , 135-152.		2
34	Science education research feeding into policy and practice in South Africa: The strengths of narrative and systematic reviews. African Journal of Research in Mathematics, Science and Technology Education, 2009, 13, 137-147.	1.0	1