Rafael Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10652334/publications.pdf

Version: 2024-02-01

41 papers 2,703 citations

304743

22

h-index

315739 38 g-index

41 all docs

41 docs citations

41 times ranked

1103 citing authors

#	Article	IF	CITATIONS
1	Release of Adenosine from Ischemic Brain. Circulation Research, 1974, 35, 262-271.	4.5	537
2	Release of Adenosine by the Normal Myocardium in Dogs and Its Relationship to the Regulation of Coronary Resistance. Circulation Research, 1969, 25, 407-415.	4.5	283
3	Increases in Cerebral Interstitial Fluid Adenosine Concentration during Hypoxia, Local Potassium Infusion, and Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 522-528.	4.3	255
4	Regulation of coronary blood flow. Progress in Cardiovascular Diseases, 1975, 18, 105-122.	3.1	242
5	Role of Adenine Nucleotides, Adenosine, and Inorganic Phosphate in the Regulation of Skeletal Muscle Blood Flow. Circulation Research, 1971, 29, 375-366.	4.5	205
6	16K-Prolactin Inhibits Activation of Endothelial Nitric Oxide Synthase, Intracellular Calcium Mobilization, and Endothelium-Dependent Vasorelaxation. Endocrinology, 2004, 145, 5714-5722.	2.8	101
7	Adenosine Formation and Release by Embryonic Chick Neurons and Glia in Cell Culture. Journal of Neurochemistry, 1989, 53, 1852-1860.	3.9	90
8	The local regulation of cerebral blood flow. Progress in Cardiovascular Diseases, 1981, 24, 243-260.	3.1	89
9	Increased Brain Interstitial Fluid Adenosine Concentration during Hypoxia in Newborn Piglet. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 178-183.	4.3	75
10	Release of adenosine and lack of release of ATP from contracting skeletal muscle. Pflugers Archiv European Journal of Physiology, 1975, 355, 229-241.	2.8	70
11	Blood Flow Regulation by Adenosine in Heart, Brain, and Skeletal Muscle. , 1983, , 293-317.		68
12	Extraction of adenine nucleotides from cultured endothelial cells. Analytical Biochemistry, 1986, 159, 73-81.	2.4	62
13	Blockade of Ca2+ dependent rat atrial slow action potentials by adenosine and lanthanum. Pflugers Archiv European Journal of Physiology, 1979, 380, 19-27.	2.8	51
14	Possible Role of Nitric Oxide in Catecholamine Secretion by Chromaffin Cells in the Presence and Absence of Cultured Endothelial Cells. Journal of Neurochemistry, 2002, 63, 988-996.	3.9	51
15	The Effect of Local Infusion of Adenosine and Adenosine Analogues on Local Cerebral Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 556-562.	4.3	44
16	Differential Distribution of Purine Metabolizing Enzymes Between Glia and Neurons. Journal of Neurochemistry, 1994, 62, 1144-1153.	3.9	44
17	Interstitial Fluid Adenosine and Sagittal Sinus Blood Flow during Bicuculline-Seizures in Newborn Piglets. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 633-639.	4.3	41
18	Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. European Journal of Pharmacology, 2000, 410, 15-23.	3.5	41

#	Article	IF	Citations
19	Measurements of coronary plasma and pericardial infusate adenosine concentrations during exercise in conscious dog: Relationship to myocardial oxygen consumption and coronary blood flow. Journal of Molecular and Cellular Cardiology, 1983, 15, 673-683.	1.9	38
20	Brain Interstitial Adenosine and Sagittal Sinus Blood Flow during Systemic Hypotension in Piglet. Journal of Cerebral Blood Flow and Metabolism, 1988, 8, 822-828.	4.3	29
21	Functional role of intravascular coronary endothelial adenosine receptors. European Journal of Pharmacology, 1992, 210, 1-9.	3.5	27
22	The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacologica Sinica, 2015, 36, 572-586.	6.1	26
23	Intracellular adenosine formation and its carrier-mediated release in cultured embryonic chick heart cells. Life Sciences, 1988, 43, 1851-1859.	4.3	22
24	Role of the endothelial glycocalyx in dromotropic, inotropic, and arrythmogenic effects of coronary flow. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H106-H116.	3.2	22
25	Calcium-dependent atrial slow action potentials generated with phosphatidic acid or phospholipaseD. Pflugers Archiv European Journal of Physiology, 1984, 401, 435-437.	2.8	21
26	Uptake and release of adenosine by cultured rat aortic smooth muscle. Microvascular Research, 1986, 32, 200-210.	2.5	20
27	Implications of the Coronary Vascular Endothelium as Mediator of the Vasodilatory and Dromotropic Actions of Adenosine. Journal of Molecular and Cellular Cardiology, 1993, 25, 693-706.	1.9	19
28	Intracellular adenosine in isolated rat liver cells. Pflugers Archiv European Journal of Physiology, 1984, 400, 106-108.	2.8	17
29	Coculture of Astroglial and Vascular Endothelial Cells as Apposing Layers Enhances the Transcellular Transport of Hypoxanthine. Journal of Neurochemistry, 2002, 64, 991-999.	3.9	14
30	Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H204-H214.	3.2	14
31	Growth of aortic vascular smooth muscle cells in lowered oxygen tension. Cell and Tissue Research, 1981, 216, 591-602.	2.9	12
32	Intravascular adenosine: the endothelial mediators of its negative dromotropic effects. European Journal of Pharmacology, 1999, 370, 27-37.	3.5	12
33	Production, Metabolism and Possible Functions of Adenosine in Brain Tissue <i>in situ</i> . Novartis Foundation Symposium, 1978, , 355-386.	1.1	11
34	Endothelium-mediated negative dromotropic effects of intravascular acetylcholine. European Journal of Pharmacology, 1998, 362, 157-166.	3.5	9
35	Two dissimilar AT1 agonists distinctively activate AT1 receptors located on the luminal membrane of coronary endothelium. Vascular Pharmacology, 2009, 51, 314-322.	2.1	9
36	Mechanisms of Action of Adenosine on Vascular Smooth Muscle and Cardiac Cells., 1983,, 319-332.		8

#	Article	IF	CITATIONS
37	Intracoronary Angiotensin II causes inotropic and vascular effects via different paracrine mechanisms. Vascular Pharmacology, 2004, 41, 147-158.	2.1	7
38	Challenges to the Adenosine Hypothesis for the Regulation of Coronary Blood Flow. Advances in Experimental Medicine and Biology, 1973, , 3-10.	1.6	6
39	Circulatory Effects of Tissue Oxygen Tension Sensors. Advances in Experimental Medicine and Biology, 1977, 78, 163-174.	1.6	5
40	The coronary endothelium behaves as a functional diffusion barrier for intravascular Angiotensin II. Vascular Pharmacology, 2013, 58, 54-63.	2.1	4
41	Cryptococcal infection in HIV-infected patients with CD4+ T-cell counts under 100/νL diagnosed in a high-income country: a multicentre cohort study. Clinical Microbiology and Infection, 2021, 27, 1171.e1-1171.e7.	6.0	2