Virginie Viallet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10651611/publications.pdf

Version: 2024-02-01

		1163117	1474206
9	1,207 citations	8	9
papers	citations	h-index	g-index
11	11	11	1375
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interface Stability of Argyrodite Li ₆ PS ₅ Cl toward LiCoO ₂ , LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ , and LiMn ₂ O ₄ in Bulk All-Solid-State Batteries. Chemistry of Materials, 2017, 29, 3883-3890.	6.7	424
2	Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics, 2012, 221, 1-5.	2.7	371
3	A New Approach to Develop Safe Allâ€Inorganic Monolithic Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 179-183.	19.5	139
4	The Stone Age Revisited: Building a Monolithic Inorganic Lithiumâ€lon Battery. Advanced Functional Materials, 2012, 22, 2140-2147.	14.9	100
5	Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. Solid State Ionics, 2013, 242, 45-48.	2.7	75
6	Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	47
7	Electrochemical characterization of Li10SnP2S12: An electrolyte or a negative electrode for solid state Li-ion batteries?. Solid State Ionics, 2016, 296, 18-25.	2.7	33
8	A detailed characterisation study of Li6PS5Cl ionic conductors from several synthetic routes. Solid State Sciences, 2021, 118, 106681.	3.2	9
9	Glasses and Glass-Ceramics for Solid-State Battery Applications. Springer Handbooks, 2019, , 1697-1754.	0.6	9