Zhengnan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10650845/publications.pdf

Version: 2024-02-01

687363 752698 19 804 13 20 citations h-index g-index papers 20 20 20 1153 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization. Bioactive Materials, 2022, 18, 399-408.	15.6	19
2	Programmable biological state-switching photoelectric nanosheets for the treatment of infected wounds. Materials Today Bio, 2022, 15, 100292.	5.5	2
3	Piezoelectric Hydrogel for Prophylaxis and Early Treatment of Pressure Injuries/Pressure Ulcers. ACS Biomaterials Science and Engineering, 2022, 8, 3078-3086.	5.2	12
4	0D/1D Heterojunction Implant with Electroâ€Mechanobiological Coupling Cues Promotes Osteogenesis. Advanced Functional Materials, 2021, 31, 2106249.	14.9	26
5	Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria. Science China Materials, 2020, 63, 1831-1841.	6.3	5
6	Polypyrrole Nanocones and Dynamic Piezoelectric Stimulation-Induced Stem Cell Osteogenic Differentiation. ACS Biomaterials Science and Engineering, 2019, 5, 4386-4392.	5.2	29
7	Antimicrobial Peptide Functionalized Conductive Nanowire Array Electrode as a Promising Candidate for Bacterial Environment Application. Advanced Functional Materials, 2019, 29, 1806353.	14.9	13
8	A built-in electric field with nanoscale distinction for cell behavior regulation. Journal of Materials Chemistry B, 2018, 6, 2723-2727.	5.8	8
9	Tunable Mechanical, Antibacterial, and Cytocompatible Hydrogels Based on a Functionalized Dual Network of Metal Coordination Bonds and Covalent Crosslinking. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6190-6198.	8.0	61
10	Polydopamine-Assisted Immobilization of Copper Ions onto Hemodialysis Membranes for Antimicrobial. ACS Applied Bio Materials, 2018, 1, 1236-1243.	4.6	14
11	Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in Polymer Science, 2018, 81, 144-162.	24.7	225
12	Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation. Scientific Reports, 2016, 6, 35512.	3.3	38
13	Polydopamineâ€Assisted Electrochemical Fabrication of Polypyrrole Nanofibers on Bone Implants to Improve Bioactivity. Macromolecular Materials and Engineering, 2016, 301, 1288-1294.	3.6	30
14	Controllable Protein Adsorption and Bacterial Adhesion on Polypyrrole Nanocone Arrays. Journal of Materials Science and Technology, 2016, 32, 950-955.	10.7	9
15	Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chemical Research in Toxicology, 2015, 28, 1815-1822.	3.3	217
16	Chondroitin sulphate-guided construction of polypyrrole nanoarchitectures. Materials Science and Engineering C, 2015, 48, 172-178.	7.3	13
17	Reversibly Controlling Preferential Protein Adsorption on Bone Implants by Using an Applied Weak Potential as a Switch. Angewandte Chemie - International Edition, 2014, 53, 13068-13072.	13.8	40
18	Taurineâ€Induced Fabrication of Nanoâ€Architectured Conducting Polypyrrole on Biomedical Titanium. Macromolecular Rapid Communications, 2014, 35, 574-578.	3.9	14

ZHENGNAN ZHOU

#	Article	IF	CITATIONS
19	Nanostructured Conducting Polymers as Intelligent Implant Surface: Fabricated on Biomedical Titanium with a Potentialâ€Induced Reversible Switch in Wettability. ChemPhysChem, 2013, 14, 3891-3894.	2.1	19