
Jarle Bruun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10650091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic role of tumour-infiltrating lymphocytes and macrophages in relation to MSI, CDX2 and BRAF status: a population-based study of metastatic colorectal cancer patients. British Journal of Cancer, 2022, 126, 48-56.	6.4	8
2	E adherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Molecular Oncology, 2022, 16, 2312-2329.	4.6	4
3	Spatial analysis and CD25-expression identify regulatory T cells as predictors of a poor prognosis in colorectal cancer. Modern Pathology, 2022, 35, 1236-1246.	5.5	8
4	The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Medicine, 2021, 13, 142.	8.2	4
5	Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of CDX2 and its negative correlation with SOX2. Laboratory Investigation, 2020, 100, 120-134.	3.7	26
6	Prediction of relapse-free survival according to adjuvant chemotherapy and regulator of chromosome condensation 2 (RCC2) expression in colorectal cancer. ESMO Open, 2020, 5, e001040.	4.5	6
7	Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine, 2020, 59, 102923.	6.1	22
8	A panel of intestinal differentiation markers (CDX2, GPA33, and Ll-cadherin) identifies gastric cancer patients with favourable prognosis. Gastric Cancer, 2020, 23, 811-823.	5.3	16
9	Patient-Derived Organoids from Multiple Colorectal Cancer Liver Metastases Reveal Moderate Intra-patient Pharmacotranscriptomic Heterogeneity. Clinical Cancer Research, 2020, 26, 4107-4119.	7.0	68
10	Tumour-infiltrating CD8+ lymphocytes and colorectal cancer recurrence by tumour and nodal stage. British Journal of Cancer, 2019, 121, 474-482.	6.4	41
11	Combination therapies with HSP90 inhibitors against colorectal cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 240-247.	7.4	81
12	Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proceedings of the United States of America, 2019, 116, 9020-9029.	7.1	372
13	Exploratory analyses of consensus molecular subtype-dependent associations of TP53 mutations with immunomodulation and prognosis in colorectal cancer. ESMO Open, 2019, 4, e000523.	4.5	11
14	Multispectral imaging for quantitative and compartmentâ€specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. Journal of Pathology, 2018, 244, 421-431.	4.5	159
15	Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clinical Cancer Research, 2018, 24, 794-806.	7.0	177
16	Prognostic, predictive, and pharmacogenomic assessments of <scp>CDX</scp> 2 refine stratification of colorectal cancer. Molecular Oncology, 2018, 12, 1639-1655.	4.6	40
17	Drug sensitivity and resistance testing identifies PLK1 inhibitors and gemcitabine as potent drugs for malignant peripheral nerve sheath tumors. Molecular Oncology, 2017, 11, 1156-1171.	4.6	15
18	CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Scientific Reports, 2017, 7, 16618.	3.3	229

Jarle Bruun

#	Article	IF	CITATIONS
19	Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Molecular Cancer, 2017, 16, 116.	19.2	232
20	Identification of Novel Fusion Genes in Testicular Germ Cell Tumors. Cancer Research, 2016, 76, 108-116.	0.9	25
21	Novel drug discovery by pharmacogenomic profiling of 36 colorectal cancer cell lines Journal of Clinical Oncology, 2016, 34, 604-604.	1.6	0
22	Regulator of Chromosome Condensation 2 Identifies High-Risk Patients within Both Major Phenotypes of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 3759-3770.	7.0	32
23	Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages. Neoplasia, 2015, 17, 167-174.	5.3	17
24	Connexins in colorectal cancer pathogenesis. International Journal of Cancer, 2015, 137, 1-11.	5.1	39
25	A novel transcript, <i>VNN1â€AB</i> , as a biomarker for colorectal cancer. International Journal of Cancer, 2014, 135, 2077-2084.	5.1	18
26	Prognostic Significance of β-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series. Frontiers in Oncology, 2014, 4, 118.	2.8	63
27	Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing. Translational Oncology, 2013, 6, 546-IN5.	3.7	29
28	Antibody crossreactivity between the tumour suppressor PHLPP1 and the protoâ€oncogene β atenin. EMBO Reports, 2013, 14, 10-11.	4.5	6
29	The Gap Junction Channel Protein Connexin 43 Is Covalently Modified and Regulated by SUMOylation. Journal of Biological Chemistry, 2012, 287, 15851-15861.	3.4	57
30	Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. International Journal of Cancer, 2012, 131, 570-581.	5.1	100
31	Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43. Journal of Cell Science, 2012, 125, 3966-76.	2.0	37