List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10649461/publications.pdf Version: 2024-02-01

FDIR STUDREU

#	Article	IF	CITATIONS
1	Segmented lateral dyke growth in a rifting event at BÃjrðarbunga volcanic system, Iceland. Nature, 2015, 517, 191-195.	27.8	436
2	Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 2010, 468, 426-430.	27.8	366
3	Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nature Geoscience, 2014, 7, 752-756.	12.9	158
4	Volcano geodesy and magma dynamics in Iceland. Journal of Volcanology and Geothermal Research, 2006, 150, 14-34.	2.1	135
5	Rift-transform kinematics in south Iceland: Deformation from Global Positioning System measurements, 1986 to 1992. Journal of Geophysical Research, 1995, 100, 6235-6248.	3.3	120
6	Volcanic plume height correlated with magma-pressure change at GrÃmsvötn Volcano, Iceland. Nature Geoscience, 2014, 7, 214-218.	12.9	86
7	Increased capture of magma in the crust promoted by ice-cap retreat in Iceland. Nature Geoscience, 2011, 4, 783-786.	12.9	85
8	Current plate movements across the Mid-Atlantic Ridge determined from 5 years of continuous GPS measurements in Iceland. Journal of Geophysical Research, 2006, 111, .	3.3	79
9	Recent unrest and magma movements at Eyjafjallajökull and Katla volcanoes, Iceland. Journal of Geophysical Research, 2003, 108, .	3.3	67
10	Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2519-2534.	3.4	63
11	Net gravity decrease at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003. Journal of Volcanology and Geothermal Research, 2005, 139, 227-239.	2.1	58
12	Deflation of the Askja volcanic system: Constraints on the deformation source from combined inversion of satellite radar interferograms and GPS measurements. Journal of Volcanology and Geothermal Research, 2006, 152, 97-108.	2.1	58
13	Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. Journal of Geophysical Research, 2011, 116, .	3.3	56
14	A twoâ€magma chamber model as a source of deformation at GrÃmsvötn Volcano, Iceland. Journal of Geophysical Research: Solid Earth, 2014, 119, 4666-4683.	3.4	56
15	Kinematic models of plate boundary deformation in southwest Iceland derived from GPS observations. Journal of Geophysical Research, 2006, 111, .	3.3	55
16	Continuous deflation of the Askja caldera, Iceland, during the 1983-1998 noneruptive period. Journal of Geophysical Research, 2000, 105, 25671-25684.	3.3	50
17	Glacioâ€isostatic deformation around the Vatnajökull ice cap, Iceland, induced by recent climate warming: GPS observations and finite element modeling. Journal of Geophysical Research, 2007, 112, . 	3.3	50
18	Volcano deformation at active plate boundaries: Deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland. Journal of Geophysical Research, 2012, 117, .	3.3	45

#	Article	IF	CITATIONS
19	Impact-related clastic injections in the marine Ordovician Lockne impact structure, Central Sweden. Sedimentology, 1997, 44, 793-804.	3.1	44
20	Sedimentological analysis of resurge deposits at the Lockne and TvÃ r en craters: Clues to flow dynamics. Meteoritics and Planetary Science, 2007, 42, 1929-1943.	1.6	43
21	Deformation of GrÃmsvötn volcano, Iceland: 1998 eruption and subsequent inflation. Geophysical Research Letters, 2003, 30, .	4.0	40
22	The Lockne Crater: Revision and Reassessment of Structure and Impact Stratigraphy. Impact Studies, 2005, , 357-388.	0.5	40
23	New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. Journal of Volcanology and Geothermal Research, 2013, 256, 78-86.	2.1	38
24	Deformation in the Northern Volcanic Zone of Iceland 2008–2014: An interplay of tectonic, magmatic, and glacial isostatic deformation. Journal of Geophysical Research: Solid Earth, 2017, 122, 3158-3178.	3.4	37
25	1983–2003 decaying rate of deflation at Askja caldera: Pressure decrease in an extensive magma plumbing system at a spreading plate boundary. Bulletin of Volcanology, 2006, 68, 727-735.	3.0	32
26	Multiple volcano deformation sources in a post-rifting period: 1989–2005 behaviour of Krafla, Iceland constrained by levelling, tilt and GPS observations. Journal of Volcanology and Geothermal Research, 2008, 177, 405-417.	2.1	32
27	Geodetic data shed light on ongoing caldera subsidence at Askja, Iceland. Bulletin of Volcanology, 2013, 75, 1.	3.0	31
28	Seismic and geodetic insights into magma accumulation at Katla subglacial volcano, Iceland: 1999 to 2005. Journal of Geophysical Research, 2008, 113, .	3.3	30
29	A new interpretation of the sedimentary cover in the western Siljan Ring area, central Sweden, based on seismic data. Tectonophysics, 2012, 580, 88-99.	2.2	30
30	New Ordovician–Silurian drill cores from the Siljan impact structure in central Sweden: an integral part of the Swedish Deep Drilling Program. Gff, 2012, 134, 87-98.	1.2	27
31	2 Katla and Eyjafjallajökull Volcanoes. Developments in Quaternary Sciences, 2010, 13, 5-21.	0.1	26
32	Chemical controls on ikaite formation. Mineralogical Magazine, 2018, 82, 1119-1129.	1.4	26
33	Strain accumulation 1986-1992 across the Reykjanes Peninsula Plate Boundary, Iceland, determined from GPS measurements. Geophysical Research Letters, 1994, 21, 125-128.	4.0	25
34	Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake. Journal of Geophysical Research: Solid Earth, 2014, 119, 5727-5740.	3.4	25
35	Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland. Journal of Geophysical Research: Solid Earth, 2016, 121, 2315-2337.	3.4	25
36	Distant ejecta from the Lockne marineâ€ŧarget impact crater, Sweden. Meteoritics and Planetary Science, 2000, 35, 929-936.	1.6	23

#	Article	IF	CITATIONS
37	Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland. Bulletin of Volcanology, 2006, 68, 420-431.	3.0	22
38	The target peneplain of the Lockne impact. Meteoritics and Planetary Science, 2004, 39, 1721-1731.	1.6	21
39	Mutually constrained geophysical data for the evaluation of a proposed impact structure: Lake Hummeln, Sweden. Tectonophysics, 1999, 311, 155-177.	2.2	20
40	Early modification stage (preresurge) sediment mobilization in the Lockne concentric, marineâ€ŧarget crater, <scp>S</scp> weden. Meteoritics and Planetary Science, 2013, 48, 321-338.	1.6	20
41	Magma Movements in Volcanic Plumbing Systems and their Associated Ground Deformation and Seismic Patterns. , 2018, , 285-322.		20
42	Concentric impact structures in the Palaeozoic of Sweden – the Lockne and Siljan craters. Gff, 2010, 132, 65-70.	1.2	18
43	First known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event. Scientific Reports, 2015, 4, 6724.	3.3	18
44	Geodetic investigation of plate spreading along a propagating ridge: the Eastern Volcanic Zone, Iceland. Geophysical Journal International, 2011, 187, 1175-1194.	2.4	15
45	Comparison of clast frequency and size in the resurge deposits at the Chesapeake Bay impact structure (Eyreville A and Langley cores): Clues to the resurge process. , 2009, , .		13
46	Water resurge at marine-target impact craters analyzed with a combination of low-velocity impact experiments and numerical simulations. , 2010, , .		12
47	Carbon mineral storage in seawater: Ikaite (CaCO3·6H2O) columns in Greenland. Energy Procedia, 2018, 146, 59-67.	1.8	12
48	Continuous subsidence in the Thingvellir rift graben, Iceland: Geodetic observations since 1967 compared to rheological models of plate spreading. Journal of Geophysical Research: Solid Earth, 2016, 121, 321-338.	3.4	9
49	Temperature-Dependent Newtonian Rheology in Advection-Convection Geodynamical Model for Plate Spreading in Eastern Volcanic Zone, Iceland. Journal of Geoscience and Environment Protection, 2015, 03, 14-26.	0.5	5
50	Water-blow and resurge breccias at the Lockne marine-target impact structure. , 2007, , 43-54.		4
51	New mass increase beneath Askja volcano, Iceland - a precursor to renewed activity?. Terra Nova, 2010, 22, no-no.	2.1	4
52	Secondary alteration of the GrĄ̃nnedal-Ika igneous complex and the genesis of ikaite, CaCO3·6H2O, SW Greenland. Chemical Geology, 2019, 510, 18-30.	3.3	4
53	Formation of uraniumâ€ŧhoriumâ€rich bitumen nodules in the Lockne impact structure, Sweden: A mechanism for carbon concentration at impact sites. Meteoritics and Planetary Science, 2007, 42, 1961-1969.	1.6	3
54	Rheological responses to plate boundary deformation at the Eastern Volcanic Zone in Iceland. Tectonophysics, 2017, 717, 16-26.	2.2	3

#	Article	IF	CITATIONS
55	Oxygen isotopes and implications for the cavity-grown quartz crystals in the Lockne impact structure, Sweden. Gff, 2011, 133, 101-107.	1.2	2
56	New multibeam mapping of the unique Ikaite columns in Ikka Fjord, SW Greenland. Marine Geology, 2022, 444, 106710.	2.1	2
57	Maurits Lindström – A renaissance geoscientist. Gff, 2007, 129, 65-70.	1.2	1
58	Geophysical signature of Målingen, the minor crater of the Lockne–Målingen doublet impact structure. Meteoritics and Planetary Science, 2018, 53, 1456-1475.	1.6	1