Karl L Magleby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10649293/publications.pdf Version: 2024-02-01

KADI L MACLERY

#	Article	IF	CITATIONS
1	Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature, 1986, 323, 718-720.	27.8	527
2	Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature, 1981, 293, 471-474.	27.8	405
3	Gating Mechanism of BK (Slo1) Channels. Journal of General Physiology, 2003, 121, 81-96.	1.9	172
4	Linker-Gating Ring Complex as Passive Spring and Ca2+-Dependent Machine for a Voltage- and Ca2+-Activated Potassium Channel. Neuron, 2004, 42, 745-756.	8.1	162
5	Voltage and Ca2+ Activation of Single Large-Conductance Ca2+-Activated K+ Channels Described by a Two-Tiered Allosteric Gating Mechanism. Journal of General Physiology, 2000, 116, 75-100.	1.9	143
6	A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9017-9022.	7.1	127
7	The β Subunit Increases the Ca2+ Sensitivity of Large Conductance Ca2+-activated Potassium Channels by Retaining the Gating in the Bursting States. Journal of General Physiology, 1999, 113, 425-440.	1.9	120
8	Gating Kinetics of Single Large-Conductance Ca2+-Activated K+ Channels in High Ca2+ Suggest a Two-Tiered Allosteric Gating Mechanism✪. Journal of General Physiology, 1999, 114, 93-124.	1.9	119
9	Functional Coupling of the β1 Subunit to the Large Conductance Ca2+-Activated K+ Channel in the Absence of Ca2+. Journal of General Physiology, 2000, 115, 719-736.	1.9	83
10	Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca ²⁺ . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11441-11446.	7.1	69
11	Kinetic Structure of Large-Conductance Ca2+-activated K+ Channels Suggests that the Gating Includes Transitions through Intermediate or Secondary States. Journal of General Physiology, 1998, 111, 751-780.	1.9	60
12	Intra- and Intersubunit Cooperativity in Activation of BK Channels by Ca2+. Journal of General Physiology, 2006, 128, 389-404.	1.9	60
13	Voltage- and cold-dependent gating of single TRPM8 ion channels. Journal of General Physiology, 2011, 137, 173-195.	1.9	60
14	Properties of Slo1 K ⁺ channels with and without the gating ring. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16657-16662.	7.1	47
15	Slo1 Tail Domains, but Not the Ca2+ Bowl, Are Required for the β1 Subunit to Increase the Apparent Ca2+ Sensitivity of BK Channels. Journal of General Physiology, 2002, 120, 829-843.	1.9	40
16	Is the quantum of transmitter release composed of subunits?. Nature, 1978, 274, 388-390.	27.8	37
17	Ring of Negative Charge in BK Channels Facilitates Block by Intracellular Mg2+ and Polyamines through Electrostatics. Journal of General Physiology, 2006, 128, 185-202.	1.9	37
18	A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities. Journal of Biological Chemistry. 2017. 292. 8978-8987.	3.4	35

KARL L MAGLEBY

#	Article	IF	CITATIONS
19	Voltage-induced slow activation and deactivation of mechanosensitive channels inXenopusoocytes. Journal of Physiology, 1997, 505, 551-569.	2.9	34
20	Â1 subunits facilitate gating of BK channels by acting through the Ca2+, but not the Mg2+, activating mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10061-10066.	7.1	32
21	Gating and Conductance Properties of Bk Channels Are Modulated by the S9–S10 Tail Domain of the α Subunit. Journal of General Physiology, 2001, 118, 711-734.	1.9	30
22	Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume. Journal of General Physiology, 2011, 137, 533-548.	1.9	27
23	Single-channel kinetics of BK (Slo1) channels. Frontiers in Physiology, 2015, 5, 532.	2.8	27
24	Linking Exponential Components to Kinetic States in Markov Models for Single-Channel Gating. Journal of General Physiology, 2008, 132, 295-312.	1.9	26
25	Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+. Journal of General Physiology, 2010, 135, 461-480.	1.9	24
26	Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels. Journal of General Physiology, 2017, 149, 373-387.	1.9	24
27	Modal gating of NMDA receptors. Trends in Neurosciences, 2004, 27, 231-233.	8.6	20
28	Coupling of Ca ²⁺ and voltage activation in BK channels through the αB helix/voltage sensor interface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14512-14521.	7.1	19
29	Mg2+ binding to open and closed states can activate BK channels provided that the voltage sensors are elevated. Journal of General Physiology, 2011, 138, 593-607.	1.9	18
30	Time-irreversible Subconductance Gating Associated with Ba2+ Block of Large Conductance Ca2+-activated K+ Channels. Journal of General Physiology, 1998, 111, 343-362.	1.9	17
31	Short Isoforms of the Cold Receptor TRPM8 Inhibit Channel Gating by Mimicking Heat Action Rather than Chemical Inhibitors. Journal of Biological Chemistry, 2012, 287, 2963-2970.	3.4	15
32	Kinetic Gating Mechanisms for Bk Channels. Journal of General Physiology, 2001, 118, 583-588.	1.9	14
33	Ion-channel mechanisms revealed. Nature, 2017, 541, 33-34.	27.8	10
34	Exponential Sum-Fitting of Dwell-Time Distributions without Specifying Starting Parameters. Biophysical Journal, 2013, 104, 2383-2391.	0.5	9
35	Lack of negative slope in I-V plots for BK channels at positive potentials in the absence of intracellular blockers. Journal of General Physiology, 2013, 141, 493-497.	1.9	7
36	Modal gating of endplate acetylcholine receptors: A proposed mechanism. Journal of General Physiology, 2015, 146, 435-439.	1.9	2