
D Flemming Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10649060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature, 2011, 477, 111-114.	13.7	265
2	An Improved ¹⁵ N Relaxation Dispersion Experiment for the Measurement of Millisecond Time-Scale Dynamics in Proteins. Journal of Physical Chemistry B, 2008, 112, 5898-5904.	1.2	196
3	Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11766-11771.	3.3	186
4	Measurement of bond vector orientations in invisible excited states of proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18473-18477.	3.3	172
5	Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. Journal of Biomolecular NMR, 2007, 38, 199-212.	1.6	160
6	Probing Chemical Shifts of Invisible States of Proteins with Relaxation Dispersion NMR Spectroscopy: How Well Can We Do?. Journal of the American Chemical Society, 2008, 130, 2667-2675.	6.6	155
7	Visualizing the Molecular Recognition Trajectory of an Intrinsically Disordered Protein Using Multinuclear Relaxation Dispersion NMR. Journal of the American Chemical Society, 2015, 137, 1220-1229.	6.6	128
8	Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. Journal of Biomolecular NMR, 2008, 41, 113-120.	1.6	112
9	Determination of Isoleucine Side-Chain Conformations in Ground and Excited States of Proteins from Chemical Shifts. Journal of the American Chemical Society, 2010, 132, 7589-7591.	6.6	88
10	NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nature Structural and Molecular Biology, 2008, 15, 868-869.	3.6	87
11	Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex. Cell Reports, 2020, 30, 2699-2711.e8.	2.9	74
12	Determination of Leu Side-Chain Conformations in Excited Protein States by NMR Relaxation Dispersion. Journal of the American Chemical Society, 2010, 132, 42-43.	6.6	72
13	Accurate Measurement of Alpha Proton Chemical Shifts of Excited Protein States by Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 1915-1926.	6.6	68
14	An Exchange-Free Measure of ¹⁵ N Transverse Relaxation:  An NMR Spectroscopy Application to the Study of a Folding Intermediate with Pervasive Chemical Exchange. Journal of the American Chemical Society, 2007, 129, 11468-11479.	6.6	66
15	Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples. Journal of Biomolecular NMR, 2008, 42, 35-47.	1.6	65
16	Probing Dynamic Conformations of the High-Molecular-Weight αB-Crystallin Heat Shock Protein Ensemble by NMR Spectroscopy. Journal of the American Chemical Society, 2012, 134, 15343-15350.	6.6	63
17	Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra. Journal of Biomolecular NMR, 2019, 73, 577-585.	1.6	62
18	¹³ CHD ₂ Methyl Group Probes of Millisecond Time Scale Exchange in Proteins by ¹ H Relaxation Dispersion: An Application to Proteasome Gating Residue Dynamics. Journal of the American Chemical Society, 2010, 132, 10992-10995.	6.6	60

D FLEMMING HANSEN

#	Article	IF	CITATIONS
19	Probing Structure in Invisible Protein States with Anisotropic NMR Chemical Shifts. Journal of the American Chemical Society, 2008, 130, 2734-2735.	6.6	58
20	Selective Characterization of Microsecond Motions in Proteins by NMR Relaxation. Journal of the American Chemical Society, 2009, 131, 16257-16265.	6.6	54
21	Characterization of Conformational Exchange of a Histidine Side Chain: Protonation, Rotamerization, and Tautomerization of His61 in Plastocyanin from <i>Anabaena variabilis</i> . Journal of the American Chemical Society, 2008, 130, 8460-8470.	6.6	51
22	Determining Valine Side-Chain Rotamer Conformations in Proteins from Methyl ¹³ C Chemical Shifts: Application to the 360 kDa Half-Proteasome. Journal of the American Chemical Society, 2011, 133, 8272-8281.	6.6	51
23	Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 12008-12012.	7.2	48
24	Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nature Protocols, 2009, 4, 1641-1648.	5.5	46
25	CPMG relaxation dispersion NMR experiments measuring glycine 1Hα and 13Cα chemical shifts in the â€~invisible' excited states of proteins. Journal of Biomolecular NMR, 2009, 45, 45-55.	1.6	41
26	Solution structure of the major factor VIII binding region on von Willebrand factor. Blood, 2014, 123, 4143-4151.	0.6	41
27	Improved magnetization alignment schemes for spin-lock relaxation experiments. Journal of Biomolecular NMR, 2007, 37, 245-255.	1.6	35
28	Loop Interactions and Dynamics Tune the Enzymatic Activity of the Human Histone Deacetylase 8. Journal of the American Chemical Society, 2013, 135, 17862-17868.	6.6	35
29	Determination of the geometric structure of the metal site in a blue copper protein by paramagnetic NMR. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1738-1743.	3.3	34
30	Quantifying Two-Bond ¹ HNâ^' ¹³ CO and One-Bond ¹ H ^α ⒒ ¹³ C ^α Dipolar Couplings of Invisible Protein States by Spin-State Selective Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 8397-8405.	6.6	34
31	Probing Arginine Sideâ€Chains and Their Dynamics with Carbonâ€Detected NMR Spectroscopy: Application to the 42â€kDa Human Histone Deacetylaseâ€8 at High pH. Angewandte Chemie - International Edition, 2013 52, 3145-3147.	8,7.2	34
32	Measurement of Methyl Axis Orientations in Invisible, Excited States of Proteins by Relaxation Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 11939-11948.	6.6	33
33	Importance of the Force Field Choice in Capturing Functionally Relevant Dynamics in the von Willebrand Factor. Journal of Physical Chemistry Letters, 2019, 10, 1928-1934.	2.1	32
34	FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling. Journal of Biomolecular NMR, 2021, 75, 179-191.	1.6	32
35	Implications of using approximate Bloch–McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin. Journal of Magnetic Resonance, 2003, 163, 215-227.	1.2	30
36	Measurement of Methyl Group Motional Parameters of Invisible, Excited Protein States by NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 12745-12754.	6.6	30

D FLEMMING HANSEN

#	Article	IF	CITATIONS
37	Detection of Short-Lived Transient Proteinâ^'Protein Interactions by Intermolecular Nuclear Paramagnetic Relaxation:Â Plastocyanin fromAnabaenavariabilis. Journal of the American Chemical Society, 2003, 125, 6858-6859.	6.6	27
38	Measuring the Signs of ¹ H ^α Chemical Shift Differences Between Ground and Excited Protein States by Off-Resonance Spin-Lock <i>R</i> _{1Ï} NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 10832-10833.	6.6	27
39	A simple method for measuring signs of 1HN chemical shift differences between ground and excited protein states. Journal of Biomolecular NMR, 2010, 47, 135-141.	1.6	26
40	Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. Journal of Organic Chemistry, 2019, 84, 11493-11512.	1.7	26
41	Characterising side chains in large proteins by protonless 13C-detected NMR spectroscopy. Nature Communications, 2019, 10, 1747.	5.8	26
42	A distal regulatory region of a class I human histone deacetylase. Nature Communications, 2020, 11, 3841.	5.8	25
43	A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15Nĥ chemical shifts. Journal of Biomolecular NMR, 2017, 69, 123-132.	1.6	23
44	A General Method for Determining the Electron Self-Exchange Rates of Blue Copper Proteins by Longitudinal NMR Relaxation. Journal of the American Chemical Society, 2002, 124, 4093-4096.	6.6	22
45	Binding Kinetics of Histone Chaperone Chz1 and Variant Histone H2A.Z-H2B by Relaxation Dispersion NMR Spectroscopy. Journal of Molecular Biology, 2009, 387, 1-9.	2.0	22
46	Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R 1ï•methods. Journal of Biomolecular NMR, 2010, 46, 205-216.	1.6	22
47	Using ¹⁵ Nâ€Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy. ChemBioChem, 2014, 15, 543-548.	1.3	22
48	On the use of pseudocontact shifts in the structure determination of metalloproteins. Magnetic Resonance in Chemistry, 2006, 44, 294-301.	1.1	21
49	Mapping the Electronic Structure of the Blue Copper Site in Plastocyanin by NMR Relaxation. Journal of the American Chemical Society, 2004, 126, 1247-1252.	6.6	20
50	Accurate Structure and Dynamics of the Metal-Site of Paramagnetic Metalloproteins from NMR Parameters Using Natural Bond Orbitals. Journal of the American Chemical Society, 2012, 134, 4670-4682.	6.6	17
51	Virtual Homonuclear Decoupling in Direct Detection Nuclear Magnetic Resonance Experiments Using Deep Neural Networks. Journal of the American Chemical Society, 2021, 143, 16935-16942.	6.6	17
52	Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction. Angewandte Chemie - International Edition, 2016, 55, 11533-11537.	7.2	16
53	A Chemical Biology Approach to Understanding Molecular Recognition of Lipidâ€II by Nisin(1–12): Synthesis and NMR Ensemble Analysis of Nisin(1–12) and Analogues. Chemistry - A European Journal, 2019, 25, 14572-14582.	1.7	16
54	Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. Journal of Physical Chemistry Letters, 2020, 11, 5649-5654.	2.1	16

#	Article	IF	CITATIONS
55	Divided-Evolution-Based Pulse Scheme for Quantifying Exchange Processes in Proteins: Powerful Complement to Relaxation Dispersion Experiments. Journal of the American Chemical Society, 2011, 133, 1935-1945.	6.6	15
56	Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR. Chemical Communications, 2017, 53, 10062-10065.	2.2	15
57	Post-translational insertion of boron in proteins to probe and modulate function. Nature Chemical Biology, 2021, 17, 1245-1261.	3.9	15
58	Intra-residue methyl–methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. Journal of Biomolecular NMR, 2019, 73, 749-757.	1.6	14
59	Reinvestigation of the method used to map the electronic structure of blue copper proteins by NMR relaxation. Journal of Biological Inorganic Chemistry, 2006, 11, 277-285.	1.1	12
60	Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy. Journal of Biomolecular NMR, 2011, 50, 13-18.	1.6	12
61	Relaxation Dispersion NMR Spectroscopy. Biological Magnetic Resonance, 2015, , 75-132.	0.4	11
62	CPMG Experiments for Protein Minor Conformer Structure Determination. Methods in Molecular Biology, 2018, 1688, 223-242.	0.4	11
63	Determining isoleucine side-chain rotamer-sampling in proteins from ¹³ C chemical shift. Chemical Communications, 2019, 55, 14107-14110.	2.2	10
64	Potent non-hydroxamate inhibitors of histone deacetylase-8: Role and scope of an isoindolin-2-yl linker with an α-amino amide as the zinc-binding unit. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126926.	1.0	10
65	Interaction Between the a3 Region of Factor VIII and the TIL'E' Domains of the von Willebrand Factor. Biophysical Journal, 2019, 117, 479-489.	0.2	9
66	Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angewandte Chemie, 2016, 128, 12187-12191.	1.6	8
67	Arginine Sideâ€Chain Hydrogen Exchange: Quantifying Arginine Sideâ€Chain Interactions in Solution. ChemPhysChem, 2019, 20, 252-259.	1.0	8
68	Methodological advancements for characterising protein side chains by NMR spectroscopy. Current Opinion in Structural Biology, 2021, 70, 61-69.	2.6	8
69	Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks. Journal of Biomolecular NMR, 2022, 76, 75-86.	1.6	7
70	Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+. Journal of Magnetic Resonance, 2014, 246, 136-148.	1.2	6
71	Aromatic side-chain flips orchestrate the conformational sampling of functional loops in human histone deacetylase 8. Chemical Science, 2021, 12, 9318-9327.	3.7	5
72	Measurement of 15 N longitudinal relaxation rates in 15 NH 4 + spin systems to characterise rotational correlation times and chemical exchange. Journal of Magnetic Resonance, 2017, 279, 91-98.	1.2	4

#	Article	IF	CITATIONS
73	Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction. Angewandte Chemie, 2016, 128, 11705-11709.	1.6	Ο
74	Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140759.	1.1	0