Yow-Jon Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1064831/publications.pdf

Version: 2024-02-01

361413 454955 1,266 94 20 30 citations h-index g-index papers 95 95 95 1385 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A source of free holes in NiO thin films with different nickel content that are prepared using the sol-gel method. Materials Chemistry and Physics, 2022, 276, 125345.	4.0	8
2	Effects of the addition of graphene on the defect-related photoluminescent and electrical properties of n-type ZnO thin films. Journal of Luminescence, 2022, 242, 118599.	3.1	3
3	Interaction of defects with solar irradiation for devices used ZnO/Ga2O3 heterojunctions in which Ga2O3 prepared using oxidation of the heavily doped p-type GaAs. Chinese Journal of Physics, 2022, 76, 35-43.	3.9	2
4	Incorporation of polyvinyl alcohol into ZrO2 to modulate the hysteresis-type current–voltage characteristics of Au/ZrO2/heavily doped p-type Si devices. Indian Journal of Physics, 2021, 95, 865-870.	1.8	1
5	Temperature-dependent resistive switching for gold/poly(methyl methacrylate)/heavily doped p-type Si/indium devices by incorporating black phosphorus into poly(methyl methacrylate). Indian Journal of Physics, 2021, 95, 1351-1356.	1.8	O
6	Electrochemical properties and trap states of TiO2 nanoparticles modified by doping with graphene and used as counter electrodes for dye-sensitized solar cell applications. Indian Journal of Physics, 2020, 94, 47-52.	1.8	2
7	Leakage conduction behavior for top- and bottom-contact pentacene thin film transistors. Indian Journal of Physics, 2020, 94, 797-800.	1.8	O
8	Effects of graphene content on resistive switching for Au/poly(methyl methacrylate): reduced graphene oxide/heavily doped p-type Si devices. Indian Journal of Physics, 2020, 94, 1209-1214.	1.8	2
9	Optical properties and defects of ZnO nanorods that are modified by treatment with \$\$hbox {H}_2hbox {O}_2\$\$ and used as conductive filaments for poly(methyl methacrylate)-based resistive switching applications. Bulletin of Materials Science, 2020, 43, 1.	1.7	2
10	Ohmic-rectification conversion that is tuned using H2O2 for enhanced rectification and optoelectronic performance in MoS2/ZnO nanorod devices. Chinese Journal of Physics, 2019, 61, 22-28.	3.9	2
11	Temperature-dependent hole transport for pentacene thin-film transistors with a SiO2 gate dielectric modified by (NH4)2S treatment. Microelectronics Reliability, 2018, 81, 90-94.	1.7	6
12	Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
13	Effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties for sol–gel grown MoS2/Si nanowire/Si devices. Journal of Materials Science: Materials in Electronics, 2018, 29, 6032-6039.	2.2	O
14	Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics. Chemical Physics Letters, 2018, 692, 388-394.	2.6	5
15	Effects of (NH4)2Sxtreatment on the surface properties of SiO2as a gate dielectric for pentacene thin-film transistor applications. Materials Research Express, 2018, 5, 015101.	1.6	2
16	Electrical and optoelectronic properties for devices that use MoS2 deposited on Si substrates with and without (NH4)2S x treatment by chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 351-356.	2.2	2
17	Effects of interface modification on electrical and optoelectronic properties of p-type CuAlO2/n-type Si heterojunction devices. Journal of Materials Science: Materials in Electronics, 2018, 29, 211-216.	2.2	1
18	Responsivity to solar irradiation and the response time of photodetectors that use ZnO nanoparticles with and without thermal annealing in pure oxygen ambient. Optik, 2018, 155, 157-162.	2.9	2

#	Article	IF	Citations
19	Incorporation of MoS2 nanoflakes into poly(3-hexylthiophene)/n-type Si devices to improve the rectification behavior and optoelectronic performance. Indian Journal of Physics, 2018, 92, 1533-1539.	1.8	1
20	Responsivity of In/ZnO nanoparticles/In and In/Ti0.05Zn0.95O nanoparticles/In devices to solar irradiation. Sensors and Actuators A: Physical, 2017, 260, 62-67.	4.1	6
21	Effects of surface modification of MoS2:TiO2:Pt counter electrodes by argon plasma treatment on photovoltaic performance of dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 4908-4913.	2.2	4
22	Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method. Journal of Materials Science: Materials in Electronics, 2017, 28, 14430-14435.	2.2	6
23	Responsivity to solar irradiation and the behavior of carrier transports for MoS2/Si and MoS2/Si nanowires/Si devices. Journal of Materials Science: Materials in Electronics, 2017, 28, 18331-18336.	2.2	2
24	Resistive switching characteristics of devices having a trilayer CuAlO x structure in the dark and under visible light illumination. Journal of Materials Science: Materials in Electronics, 2017, 28, 14377-14384.	2.2	3
25	SiO2 substrate passivation effects on the temperature-dependent electrical properties of MoS2 prepared by the chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2017, 28, 10106-10111.	2.2	11
26	Effects of Al doping on the responsivity of solar irradiation of devices that use ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 10205-10211.	2.2	5
27	Incorporation of black phosphorus into P3HT:PCBM/n-type Si devices resulting in improvement in electrical and optoelectronic performances. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
28	Interface modification of MoS2/SiO2 leading to conversion of conduction type of MoS2. Applied Surface Science, 2016, 387, 661-665.	6.1	14
29	Extrinsic and intrinsic performance effects on the electrical property in few-layer graphene. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	1
30	Interface modification of MoS2:TiO2 counter electrode/electrolyte in dye-sensitized solar cells by doping with different Co contents. Journal of Materials Science: Materials in Electronics, 2016, 27, 5059-5063.	2.2	7
31	Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
32	Effect of incorporation of black phosphorus into PEDOT:PSS on conductivity and electron–phonon coupling. Synthetic Metals, 2016, 212, 180-185.	3.9	31
33	Interface characteristics for graphene contact to n-type and p-type GaN observed by X-ray photoelectron spectroscopy. Journal of Materials Science: Materials in Electronics, 2015, 26, 3052-3056.	2.2	4
34	Dielectric substrate effect on the temperature-dependent electrical properties of pentacene films. Journal of Materials Science: Materials in Electronics, 2015, 26, 2579-2583.	2.2	8
35	Temperature-dependent electrical properties for graphene Schottky contact on n-type Si with and without sulfide treatment. Applied Physics A: Materials Science and Processing, 2015, 118, 353-359.	2.3	17
36	Photoluminescent, morphological and electrical properties of ZrO2 and ZrO2:polyvinyl alcohol composite thin films. Journal of Non-Crystalline Solids, 2015, 426, 132-136.	3.1	11

#	Article	IF	Citations
37	Correlation between interface modification and rectifying behavior of p-type Cu2ZnSnS4/n-type Si diodes. Applied Physics A: Materials Science and Processing, 2015, 121, 103-108.	2.3	14
38	Interface modification of MoS2 counter electrode/electrolyte in dye-sensitized solar cells by incorporating TiO2 nanoparticles. Current Applied Physics, 2015, 15, 906-909.	2.4	16
39	Environmental effects on temperature-dependent carrier transports in poly(3-hexylthiophene) films. Applied Physics A: Materials Science and Processing, 2015, 119, 365-369.	2.3	1
40	Conduction behavior conversion for Cu-doped ZnS/n-type Si devices with different Cu contents. Applied Physics A: Materials Science and Processing, 2015, 119, 1127-1132.	2.3	14
41	Overpotential modification at the MoS2 counter electrode/electrolyte interfaces by thermal annealing resulting improvement in photovoltaic performance of dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 3739-3743.	2.2	11
42	Cadmium content-dependent photoluminescent properties and band offsets of $Zn1\hat{a}^2 \times Cd \times Oflms$. Journal of Materials Science: Materials in Electronics, 2015, 26, 5254-5258.	2.2	1
43	Tuning charge transport in pentacene thin-film transistors using the strain-induced electron–phonon coupling modification. Applied Physics A: Materials Science and Processing, 2015, 118, 1205-1210.	2.3	3
44	Tuning electrical parameters of graphene/p-type polycrystalline silicon Schottky diodes by ultraviolet irradiation. Applied Physics A: Materials Science and Processing, 2015, 118, 361-366.	2.3	6
45	Electrical conduction mechanisms of Au/NiO/heavily doped p-type Si memory devices. Applied Physics Letters, 2014, 104, .	3.3	11
46	Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers. Applied Physics Letters, 2014, 104, .	3.3	36
47	Temperature-dependent gate-swing hysteresis of pentacene thin film transistors. AIP Advances, 2014, 4, 107105.	1.3	5
48	Determination of Schottky barrier heights and Fermi-level unpinning at the graphene/n-type Si interfaces by X-ray photoelectron spectroscopy and Kelvin probe. Applied Surface Science, 2014, 322, 225-229.	6.1	15
49	Electrical conduction mechanisms in the transfer characteristics of pentacene thin film transistors. Applied Physics Letters, 2014, 105, .	3.3	9
50	Electronic and surface properties of pentacene films deposited on SiO2 prepared by the sol–gel and thermally grown methods. Thin Solid Films, 2014, 552, 159-163.	1.8	10
51	Carrier transport and photoresponse for heterojunction diodes based on the reduced graphene oxide-based TiO2 composite and p-type Si. Applied Physics A: Materials Science and Processing, 2014, 116, 91-95.	2.3	17
52	Electrical and optoelectronic properties of graphene Schottky contact on Si-nanowire arrays with and without H2O2 treatment. Applied Physics A: Materials Science and Processing, 2014, 116, 581-587.	2.3	6
53	Effects of H 2 O 2 treatment on the optical and structural properties of ZnO nanorods and the electrical properties of conductive polymer/ZnO-nanorod array diodes. Thin Solid Films, 2013, 545, 476-479.	1.8	13
54	High Schottky barrier height of Au contact on Si-nanowire arrays with sulfide treatment. Journal of Applied Physics, 2013, 114, 143710.	2.5	22

#	Article	IF	CITATIONS
55	Effects of reduction temperature on the optoelectronic properties of diodes based on n-type Si and reduced graphene oxide doped with a conductive polymer. Semiconductor Science and Technology, 2013, 28, 065008.	2.0	3
56	Influence of illumination on the output characteristics in pentacene thin film transistors. Materials Chemistry and Physics, 2013, 142, 428-431.	4.0	14
57	Tuning the work function of graphene by ultraviolet irradiation. Applied Physics Letters, 2013, 102, 183120.	3.3	38
58	Electronic transport and Schottky barrier heights of p-type CuAlO2 Schottky diodes. Applied Physics Letters, 2013, 102, .	3.3	14
59	Influence of the contact resistance effect on the output characteristics of pentacene-based organic thin film transistors. Microelectronic Engineering, 2013, 103, 76-78.	2.4	19
60	Hybrid diodes based on n-type Ge and conductive polymer doped by graphene oxide sheets with and without reduction treatment. Journal of Applied Physics, 2013, 113, 064502.	2.5	7
61	Tuning the formation of p-type defects by peroxidation of CuAlO2 films. Journal of Applied Physics, 2013, 114, .	2.5	15
62	Electronic properties of annealed pentacene films in air at various temperatures up to 400 K. Applied Physics Letters, 2012, 101, 113306.	3.3	10
63	Hall-effect mobility of pentacene films prepared by the thermal evaporating method with different substrate temperature. Applied Physics Letters, 2012, 101, .	3.3	20
64	Carrier transport mechanism of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) films by incorporating ZnO nanoparticles. Applied Physics Letters, 2012, 100, .	3.3	24
65	Comment on "Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells―[Appl. Phys. Lett. 99, 023308 (2011)]. Applied Physics Letters, 2012, 100, 266101.	3.3	1
66	Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes. Thin Solid Films, 2012, 525, 154-157.	1.8	10
67	Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide. Applied Physics Letters, 2012, 101, 053305.	3.3	21
68	Hybrid photovoltaic devices based on the reduced graphene oxide-based polymer composite and n-type GaAs. Synthetic Metals, 2012, 162, 1411-1415.	3.9	14
69	Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si. Applied Physics Letters, 2012, 100, 153509.	3.3	50
70	Current transport mechanism of heterojunction diodes based on the sol–gel p-type ZnO and n-type Si with H2O2 treatment. Materials Chemistry and Physics, 2012, 136, 179-183.	4.0	22
71	Effects of Ti content on the optical and structural properties of the Ti-doped ZnO nanoparticles. Journal of Luminescence, 2012, 132, 491-494.	3.1	27
72	Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films. Journal of Applied Physics, 2011, 110, .	2.5	55

#	Article	IF	CITATIONS
73	Current–voltage characteristics of AlCdO Schottky contact on the polished and unpolished p-type Si surfaces with and without light illumination. Solid-State Electronics, 2011, 61, 116-120.	1.4	4
74	Effect of the induced electron traps by oxygen plasma treatment on transfer characteristics of organic thin film transistors. Applied Physics Letters, 2011, 99, .	3.3	35
75	Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films. Applied Surface Science, 2010, 256, 7623-7627.	6.1	57
76	Discrepancy in mobility extracted from transfer and output characteristics of organic thin film transistors. Applied Physics Letters, 2010, 97, .	3.3	20
77	Effects of Li content on the structural, optical, and electrical properties of LiZnMgO films. Journal of Applied Physics, 2010, 107, .	2.5	20
78	Leakage conduction mechanism of top-contact organic thin film transistors. Synthetic Metals, 2010, 160, 2628-2630.	3.9	14
79	Effects of ultraviolet treatment on the contact resistivity and electronic transport at the Ti/ZnO interfaces. Journal of Applied Physics, 2009, 106 , .	2.5	9
80	Ferromagnetism study of Co0.2Mg x Zn0.8â^'x O films prepared by the solâ€"gel method. Journal of Sol-Gel Science and Technology, 2009, 52, 109-112.	2.4	9
81	Hysteresis mechanism in current–voltage characteristics of ZrO _{<i>x</i>} films prepared by the sol–gel method. Journal Physics D: Applied Physics, 2009, 42, 045419.	2.8	6
82	Analysis of the band-edge luminescence degradation for ZnO films with Al doping prepared by the sol–gel method. Journal of Crystal Growth, 2008, 310, 4110-4114.	1.5	14
83	Effects of Mg incorporation on the optical properties of ZnO prepared by the sol-gel method. Journal of Applied Physics, 2008, 103, .	2.5	31
84	Mechanisms of enhancing band-edge luminescence of Zn1â^'xMgxO prepared by the solâ€"gel method. Journal Physics D: Applied Physics, 2008, 41, 125103.	2.8	11
85	Excimer laser irradiation induced suppression of off-state leakage current in organic transistors. Applied Physics Letters, 2007, 90, 222103.	3.3	8
86	Induced increase in surface work function and surface energy of indium tin oxide-doped ZnO films by (NH4)2Sx treatment. Journal of Applied Physics, 2007, 101, 113713.	2.5	7
87	Optical and electrical properties of undoped ZnO films. Journal of Applied Physics, 2006, 99, 093501.	2.5	120
88	Changes in surface band bending, surface work function, and sheet resistance of undoped ZnO films due to (NH[sub 4])[sub 2]S[sub x] treatment. Journal of Applied Physics, 2006, 100, 113721.	2.5	33
89	Hole-transport barrier and band bending at the indium tin oxide/polymer/p-AlGaN interface. Applied Physics Letters, 2006, 89, 152121.	3.3	3
90	Enhancement of Schottky barrier height on p-type GaN by (NH4)2Sx treatment. Journal of Applied Physics, 2006, 99, 053706.	2.5	13

Yow-Jon Lin

#	Article	IF	CITATION
91	Increase mechanism of indium-tin-oxide work function by KrF excimer laser irradiation. Journal of Electronic Materials, 2005, 34, L9-L11.	2.2	8
92	Study of schottky barrier heights of indium-tin-oxide on p-GaN using x-ray photoelectron spectroscopy and current-voltage measurements. Journal of Electronic Materials, 2004, 33, 1036-1040.	2.2	21
93	Investigation of surface treatments for nonalloyed ohmic contact formation in Ti/Al contacts to n-type GaN. Applied Physics Letters, 2000, 77, 3986-3988.	3.3	60
94	Induced transition from Schottky to ohmic contact in In/n-type Si owing to (NH4)2Sx treatment. Indian Journal of Physics, 0, , 1.	1.8	0