William S D Wilcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1064658/publications.pdf

Version: 2024-02-01

117619 149686 3,744 97 34 56 citations g-index h-index papers 110 110 110 2318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geodetic Monitoring at Axial Seamount Since Its 2015 Eruption Reveals a Waning Magma Supply and Tightly Linked Rates of Deformation and Seismicity. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	11
2	A Thirty-Month Seafloor Test of the A-O-A Method for Calibrating Pressure Gauges. Frontiers in Earth Science, 2021, 8, .	1.8	12
3	Illuminating tremors in the deep. Science, 2021, 371, 882-884.	12.6	2
4	Persistent Mobile Ocean Observing: Marine Vehicle Highways. Marine Technology Society Journal, 2021, 55, 86-87.	0.4	0
5	A method for tracking blue whales (Balaenoptera musculus) with a widely spaced network of ocean bottom seismometers. PLoS ONE, 2021, 16, e0260273.	2.5	4
6	Physical Sources of Highâ€Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009085.	2.5	20
7	New Opportunities to Study Earthquake Precursors. Seismological Research Letters, 2020, 91, 2444-2447.	1.9	27
8	Precision Seismic Monitoring and Analysis at Axial Seamount Using a Realâ€Time Doubleâ€Difference System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018796.	3.4	11
9	Axial Seamount: Periodic tidal loading reveals stress dependence of the earthquake size distribution (b value). Earth and Planetary Science Letters, 2019, 512, 39-45.	4.4	23
10	A Joint Inversion for Threeâ€dimensional <i>P</i> and <i>S</i> Wave Velocity Structure and Earthquake Locations Beneath Axial Seamount. Journal of Geophysical Research: Solid Earth, 2019, 124, 12997-13020.	3.4	5
11	Optimizing Sensor Configurations for the Detection of Slowâ€Slip Earthquakes in Seafloor Pressure Records, Using the Cascadia Subduction Zone as a Case Study. Journal of Geophysical Research: Solid Earth, 2019, 124, 13504-13531.	3.4	18
12	Upper Crustal <i>Vp</i> / <i>Vs</i> Ratios at the Endeavour Segment, Juan de Fuca Ridge, From Joint Inversion of <i>P</i> and <i>S</i> Traveltimes: Implications for Hydrothermal Circulation. Geochemistry, Geophysics, Geosystems, 2019, 20, 208-229.	2.5	16
13	Seismic Imaging and Physical Properties of the Endeavour Segment: Evidence that Skew Between Mantle and Crustal Magmatic Systems Governs Spreading Center Processes. Geochemistry, Geophysics, Geosystems, 2019, 20, 1319-1339.	2.5	16
14	Developing a Warning System for Inbound Tsunamis from the Cascadia Subduction Zone. , 2018, , .		2
15	Structure, Seismicity, and Accretionary Processes at the Hot Spotâ€Influenced Axial Seamount on the Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 2018, 123, 4618-4646.	3.4	33
16	Observation and Modeling of Hydrothermal Response to the 2015 Eruption at Axial Seamount, Northeast Pacific. Geochemistry, Geophysics, Geosystems, 2018, 19, 2780-2797.	2.5	10
17	The Role of the Ocean Observatories Initiative in Monitoring the Offshore Earthquake Activity of the Cascadia Subduction Zone. Oceanography, 2018, 31, 104-113.	1.0	12
18	A Tale of Two Eruptions: How Data from Axial Seamount Led to a Discovery on the East Pacific Rise. Oceanography, 2018, 31, 124-125.	1.0	5

#	Article	IF	CITATIONS
19	The Recent Volcanic History of Axial Seamount: Geophysical Insights into Past Eruption Dynamics with an Eye Toward Enhanced Observations of Future Eruptions. Oceanography, 2018, 31, 114-123.	1.0	34
20	Seismic evidence that black smoker heat flux is influenced by localized magma replenishment and associated increases in crustal permeability. Geophysical Research Letters, 2017, 44, 1687-1695.	4.0	17
21	Estimating range to a vocalizing fin whale using the timing and amplitude of multipath arrivals. Journal of the Acoustical Society of America, 2017, 142, 2101-2120.	1.1	6
22	Database of multi-parametric geophysical data from the TOMO-DEC experiment on Deception Island, Antarctica. Scientific Data, 2017, 4, 170128.	5. 3	7
23	Spatial and temporal trends in fin whale vocalizations recorded in the NE Pacific Ocean between 2003-2013. PLoS ONE, 2017, 12, e0186127.	2.5	43
24	Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys. PLoS ONE, 2017, 12, e0171115.	2.5	4
25	Designing an offshore geophysical network in the Pacific Northwest for earthquake and tsunami early warning and hazard research. , 2016 , , .		1
26	Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science, 2016, 354, 1395-1399.	12.6	84
27	Nearâ€exis crustal structure and thickness of the Endeavour Segment, Juan de Fuca Ridge. Geophysical Research Letters, 2016, 43, 5688-5695.	4.0	10
28	Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature, 2016, 540, 261-265.	27.8	39
29	Segmentation of mid-ocean ridges attributed to oblique mantle divergence. Nature Geoscience, 2016, 9, 636-642.	12.9	29
30	Next-generation seismic experiments – II: wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse field data. Geophysical Journal International, 2016, 204, 1342-1363.	2.4	25
31	Planning for a Subduction Zone Observatory. Eos, 2016, 97, .	0.1	2
32	Sound source localization technique using a seismic streamer and its extension for whale localization during seismic surveys. Journal of the Acoustical Society of America, 2015, 138, 3951-3963.	1.1	2
33	The Cascadia Initiative: A Sea Change In Seismological Studies of Subduction Zones. Oceanography, 2014, 27, 138-150.	1.0	106
34	Sounds in the Ocean at 1–100 Hz. Annual Review of Marine Science, 2014, 6, 117-140.	11.6	67
35	Unusual signals recorded by ocean bottom seismometers in the flooded caldera of Deception Island volcano: volcanic gases or biological activity?. Antarctic Science, 2014, 26, 267-275.	0.9	12
36	Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: Implications for oceanic crustal accretion. Geochemistry, Geophysics, Geosystems, 2014, 15, 1296-1315.	2.5	34

3

#	Article	IF	Citations
37	Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. Journal of the Acoustical Society of America, 2013, 133, 741-749.	1.1	47
38	Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge, Northeast Pacific Ocean. Journal of the Acoustical Society of America, 2013, 133, 1751-1761.	1.1	42
39	Termination of a 6 year ridgeâ€spreading event observed using a seafloor seismic network on the Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2013, 14, 1375-1398.	2.5	20
40	Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network. Journal of the Acoustical Society of America, 2012, 132, 2408-2419.	1.1	40
41	Endeavour Segment of the Juan de Fuca Ridge: One of the Most Remarkable Places on Earth. Oceanography, 2012, 25, 44-61.	1.0	65
42	Flow rate perturbations in a black smoker hydrothermal vent in response to a midâ€ocean ridge earthquake swarm. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	33
43	A seismic swarm and regional hydrothermal and hydrologic perturbations: The northern Endeavour segment, February 2005. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	20
44	The P-wave velocity structure of Deception Island, Antarctica, from two-dimensional seismic tomography. Journal of Volcanology and Geothermal Research, 2009, 180, 67-80.	2.1	30
45	Tidal triggering of earthquakes in the Northeast Pacific Ocean. Geophysical Journal International, 2009, 179, 1055-1070.	2.4	47
46	Toomey et al. reply. Nature, 2009, 458, E12-E13.	27.8	2
47	The role of magma injection in localizing black-smoker activity. Nature Geoscience, 2009, 2, 509-513.	12.9	67
48	A Si l geothermobarometer for the reaction zone of highâ€temperature, basalticâ€hosted midâ€ocean ridge hydrothermal systems. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	43
49	Crustal structure of Deception Island volcano from $\langle i \rangle P \langle i \rangle$ wave seismic tomography: Tectonic and volcanic implications. Journal of Geophysical Research, 2009, 114, .	3.3	66
50	Bathymetric constraints on the tectonic and volcanic evolution of Deception Island Volcano, South Shetland Islands. Antarctic Science, 2009, 21, 153-167.	0.9	31
51	Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems. Experiments in Fluids, 2008, 45, 899-915.	2.4	31
52	Observations of infragravity waves at the oceanâ€bottom broadband seismic stations Endeavour (KEBB) and Explorer (KXBB). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	24
53	The Deployment of a Long-Term Seafloor Seismic Network on the Juan de Fuca Ridge. , 2007, , .		4
54	Physical controls on the salinity of mid-ocean ridge hydrothermal vent fluids. Earth and Planetary Science Letters, 2007, 257, 132-145.	4.4	44

#	Article	IF	CITATIONS
55	Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity. Journal of Geophysical Research, 2007, 112, .	3.3	95
56	Twoâ€dimensional numerical models of openâ€top hydrothermal convection at high Rayleigh and Nusselt numbers: Implications for midâ€ocean ridge hydrothermal circulation. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	46
57	Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature, 2007, 446, 409-414.	27.8	110
58	Dynamics and storage of brine in mid-ocean ridge hydrothermal systems. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	54
59	Seismic Attenuation Structure of the Seattle Basin, Washington State, from Explosive-Source Refraction Data. Bulletin of the Seismological Society of America, 2006, 96, 553-571.	2.3	13
60	The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents. PLoS ONE, 2006, 1, e133.	2.5	29
61	Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	51
62	Diking, event plumes, and the subsurface biosphere at mid-ocean ridges. Geophysical Monograph Series, 2004, , 75-97.	0.1	8
63	Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at axial volcano. Geophysical Monograph Series, 2004, , 269-289.	0.1	98
64	Studying the deep subsurface biosphere: Emerging technologies and applications. Geophysical Monograph Series, 2004, , 383-399.	0.1	4
65	Detection of and response to mid-ocean ridge magmatic events: Implications for the subsurface biosphere. Geophysical Monograph Series, 2004, , 227-243.	0.1	15
66	Distribution of unusual archaea in subsurface biosphere. Geophysical Monograph Series, 2004, , 369-381.	0.1	10
67	Upper crustal seismic velocity structure and microearthquake depths at the Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	17
68	Physical response of mid-ocean ridge hydrothermal systems to local earthquakes. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	37
69	Volatiles in submarine environments: Food for life. Geophysical Monograph Series, 2004, , 167-189.	0.1	17
70	Significance of polysaccharides in microbial physiology and the ecology of hydrothermal vent environments. Geophysical Monograph Series, 2004, , 213-226.	0.1	5
71	Unifying principles of the deep terrestrial and deep marine biospheres. Geophysical Monograph Series, 2004, , 355-367.	0.1	9
72	Segment-scale variations in the crustal structure of 150-300 kyr old fast spreading oceanic crust (East) Tj ETQq 766-794.	0 0 0 rgBT 2.4	/Overlock 10 1 97

766-794.

#	Article	IF	CITATIONS
73	A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	72
74	Microearthquakes on the Endeavour segment of the Juan de Fuca Ridge. Journal of Geophysical Research, 2002, 107, EPM 4-1-EPM 4-21.	3.3	68
75	Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth and Planetary Science Letters, 2002, 200, 287-295.	4.4	70
76	Laboratory studies of high Rayleigh number circulation in an open-top Hele-Shaw cell: An analog to mid-ocean ridge hydrothermal systems. Journal of Geophysical Research, 2001, 106, 10983-11000.	3.3	20
77	Tidal triggering of microearthquakes on the Juan de Fuca Ridge. Geophysical Research Letters, 2001, 28, 3999-4002.	4.0	111
78	Continuous Mantle Melt Supply Beneath an Overlapping Spreading Center on the East Pacific Rise. Science, 2001, 291, 1955-1958.	12.6	48
79	Seismic heterogeneity in the upper crust near the 1991 eruption site on the East Pacific Rise, 9°50′N. Geophysical Research Letters, 2000, 27, 2369-2372.	4.0	8
80	Seismic anisotropy of the shallow crust at the Juan de Fuca Ridge. Geophysical Research Letters, 2000, 27, 3109-3112.	4.0	9
81	Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below. Journal of Fluid Mechanics, 1999, 394, 241-260.	3.4	56
82	Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids. Journal of Geophysical Research, 1998, 103, 2585-2596.	3.3	71
83	Mantle Seismic Structure Beneath the MELT Region of the East Pacific Rise from P and S Wave Tomography. Science, 1998, 280, 1224-1227.	12.6	123
84	The Quantum Event of Oceanic Crustal Accretion: Impacts of Diking at Mid-Ocean Ridges. , 1998, 281, 222-230.		172
85	A model for the formation of transient event plumes above mid-ocean ridge hydrothermal systems. Journal of Geophysical Research, 1997, 102, 12109-12121.	3.3	29
86	Thermal fluxes associated with the 1993 diking event on the CoAxial segment, Juan de Fuca Ridge: A model for the convective cooling of a dike. Journal of Geophysical Research, 1997, 102, 24887-24902.	3.3	48
87	Exploration Seismology, 2nd edition. Continental Shelf Research, 1997, 17, 583-584.	1.8	6
88	Estimates of crustal permeability on the endeavour segment of the Juan de Fuca mid-ocean ridge. Earth and Planetary Science Letters, 1996, 138, 83-91.	4.4	56
89	Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts?. Earth and Planetary Science Letters, 1996, 145, 49-64.	4.4	140
90	Seismic attenuation structure of the East Pacific Rise near 9°30′N. Journal of Geophysical Research, 1995, 100, 24147-24165.	3.3	57

#	Article	IF	CITATIONS
91	The shallow attenuation structure of the fast-spreading East Pacific Rise near 9°30′N. Geophysical Research Letters, 1994, 21, 321-324.	4.0	33
92	The renavigation of Sea Beam bathymetric data between $9i\frac{1}{2}$ N and $10i\frac{1}{2}$ N on the East Pacific Rise. Marine Geophysical Researches, 1993, 15, 1-12.	1.2	27
93	Seismic propagation across the East Pacific Rise: Finite difference experiments and implications for seismic tomography. Journal of Geophysical Research, 1993, 98, 19913-19932.	3.3	24
94	The Seismic Attenuation Structure of a Fast-Spreading Mid-Ocean Ridge. Science, 1992, 258, 1470-1474.	12.6	70
95	Microearthquakes on and near the East Pacific Rise, 9°–10°N. Geophysical Research Letters, 1992, 19, 2131-2134.	4.0	34
96	The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9° 30′ N. Nature, 1990, 347, 639-645.	27.8	261
97	Rotational Seismology with a Quartz Rotation Sensor. Seismological Research Letters, 0, , .	1.9	2