
Sandrina A A Heleno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1064373/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 2015, 173, 501-513.	8.2	633
2	Phenolic compounds: current industrial applications, limitations and future challenges. Food and Function, 2021, 12, 14-29.	4.6	318
3	Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 2015, 114, 38-55.	2.9	250
4	Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 2010, 119, 1443-1450.	8.2	181
5	Cosmetics Preservation: A Review on Present Strategies. Molecules, 2018, 23, 1571.	3.8	177
6	Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 2016, 197, 1054-1063.	8.2	132
7	Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 2012, 46, 135-140.	6.2	123
8	Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, 2013, 58, 95-100.	3.6	120
9	The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International, 2015, 76, 821-827.	6.2	111
10	Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchemical Journal, 2009, 93, 195-199.	4.5	99
11	Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food and Chemical Toxicology, 2010, 48, 2881-2884.	3.6	98
12	Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 2010, 43, 544-550.	5.2	93
13	A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 2013, 51, 236-243.	6.2	90
14	Toward the Antioxidant and Chemical Characterization of Mycorrhizal Mushrooms from Northeast Portugal. Journal of Food Science, 2011, 76, C824-30.	3.1	80
15	Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science and Technology, 2020, 103, 118-129.	15.1	80
16	Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 4634-4640.	5.2	78
17	The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 2017, 108, 139-147.	3.6	78
18	Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food and Chemical Toxicology, 2009, 47, 2458-2464.	3.6	73

SANDRINA A A HELENO

#	Article	IF	CITATIONS
19	Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 2016, 21, 1372.	3.8	68
20	Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Bioscience, 2015, 11, 48-55.	4.4	67
21	Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Research International, 2011, 44, 1029-1035.	6.2	63
22	Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT - Food Science and Technology, 2015, 63, 799-806.	5.2	63
23	Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Research International, 2019, 116, 312-319.	6.2	61
24	Extraction of triterpenoids and phenolic compounds from <i>Ganoderma lucidum</i> : optimization study using the response surface methodology. Food and Function, 2018, 9, 209-226.	4.6	59
25	Targeted metabolites analysis in wild Boletus species. LWT - Food Science and Technology, 2011, 44, 1343-1348.	5.2	58
26	Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food and Bioproducts Processing, 2016, 100, 25-35.	3.6	56
27	Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, 2018, 245, 845-853.	8.2	53
28	Physicochemical characterization and microbiology of wheat and rye flours. Food Chemistry, 2019, 280, 123-129.	8.2	50
29	Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chemistry, 2021, 337, 127998.	8.2	41
30	Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Industrial Crops and Products, 2017, 95, 365-373.	5.2	40
31	Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products, 2018, 112, 460-466.	5.2	40
32	Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chemistry, 2018, 261, 224-232.	8.2	39
33	Comparison of different bread types: Chemical and physical parameters. Food Chemistry, 2020, 310, 125954.	8.2	37
34	<i>Calluna vulgaris</i> (L.) Hull: chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food and Function, 2019, 10, 78-89.	4.6	36
35	Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchemical Journal, 2019, 147, 469-477.	4.5	36
36	Anthocyanin Profile of Elderberry Juice: A Natural-Based Bioactive Colouring Ingredient with Potential Food Application. Molecules, 2019, 24, 2359.	3.8	35

SANDRINA A A HELENO

#	Article	IF	CITATIONS
37	Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants, 2019, 8, 394.	5.1	33
38	Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT - Food Science and Technology, 2015, 63, 475-481.	5.2	30
39	Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food and Function, 2018, 9, 149-159.	4.6	29
40	The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba BuchHam from Brazil. Food Chemistry, 2018, 241, 163-170.	8.2	29
41	Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives. Food Research International, 2014, 55, 170-175.	6.2	28
42	Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. LWT - Food Science and Technology, 2019, 103, 228-237.	5.2	24
43	Development of dairy beverages functionalized with pure ergosterol and mycosterol extracts: an alternative to phytosterol-based beverages. Food and Function, 2017, 8, 103-110.	4.6	23
44	Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Industrial Crops and Products, 2018, 119, 249-254.	5.2	21
45	HPLC-DAD-ESI-MS/MS screening of phytochemical compounds and the bioactive properties of different plant parts of <i>Zizyphus lotus</i> (L.) Desf Food and Function, 2019, 10, 5898-5909.	4.6	21
46	Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives. Current Pharmaceutical Design, 2020, 26, 815-837.	1.9	21
47	Plant volatiles: Using Scented molecules as food additives. Trends in Food Science and Technology, 2022, 122, 97-103.	15.1	20
48	Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chemistry, 2022, 386, 132778.	8.2	20
49	Coprinopsis atramentaria extract, its organic acids, and synthesized glucuronated and methylated derivatives as antibacterial and antifungal agents. Food and Function, 2014, 5, 2521-2528.	4.6	18
50	Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Industrial Crops and Products, 2018, 124, 44-52.	5.2	18
51	Betacyanins from Comphrena globosa L. flowers: Incorporation in cookies as natural colouring agents. Food Chemistry, 2020, 329, 127178.	8.2	18
52	Chemical and Bioactive Features of Amaranthus caudatus L. Flowers and Optimized Ultrasound-Assisted Extraction of Betalains. Foods, 2021, 10, 779.	4.3	18
53	Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants, 2021, 10, 1181.	3.5	18
54	Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry, 2022, 372, 131344.	8.2	18

SANDRINA A A HELENO

1

#	ARTICLE	IF	CITATIONS
55	Food Additives from Fruit and Vegetable By-Products and Bio-Residues: A Comprehensive Review Focused on Sustainability. Sustainability, 2022, 14, 5212.	3.2	18
56	Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules, 2021, 26, 7472.	3.8	16
57	Non-edible parts of Solanum stramoniifolium Jacq. – a new potent source of bioactive extracts rich in phenolic compounds for functional foods. Food and Function, 2017, 8, 2013-2021.	4.6	14
58	A novel natural coating for food preservation: Effectiveness on microbial growth and physicochemical parameters. LWT - Food Science and Technology, 2019, 104, 76-83.	5.2	13
59	Promising Preserving Agents from Sage and Basil: A Case Study with Yogurts. Foods, 2021, 10, 676.	4.3	10
60	Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods, 2021, 10, 2213.	4.3	8
61	Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors, 2022, 10, 257.	3.6	8
62	Detailed phytochemical characterization and bioactive properties of Myrtus nivelii Batt & Trab. Food and Function, 2017, 8, 3111-3119.	4.6	6
63	Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria. Food and Function, 2019, 10, 2399-2407.	4.6	6
64	Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. LWT - Food Science and Technology, 2021, 145, 111335.	5.2	6
65	Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants, 2020, 9, 281.	5.1	3
66	An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Current Medicinal Chemistry, 2020, 27, 4344-4371.	2.4	2
67	<i>Arbutus unedo</i> leaf extracts as potential dairy preservatives: case study on quark cheese. Food and Function, 2022, 13, 5442-5454.	4.6	2
68	Preservation of Chocolate Muffins with Lemon Balm, Oregano, and Rosemary Extracts. Foods, 2021, 10, 165.	4.3	1
69	A influência da radiação por feixe de eletrões na composição nutricional de flores comestÃveis de Bauhinia variegata L. provenientes do Brasil. Revista De CiAªncias Agrárias, 2017, 40, S169-S173.	0.2	1
70	Antimicrobial Activity of Aqueous Plant Extracts as Potential Natural Additives. Proceedings (mdpi), 2020, 70, .	0.2	1
71	Optimization through Response Surface Methodology of Dynamic Maceration of Olive (Olea europaea) Tj ETQq1	1 0.7843	14 rgBT /Ove

Novel Incorporation of Red-Stage Haematococcus pluvialis Wet Paste as a Colourant and Enhancer of the Organoleptic and Functional Properties of Filloas â€. , 2021, 6, .

#	Article	IF	CITATIONS
73	Improving the physicochemical properties of a traditional Portuguese cake – "económicos―with chestnut flour. Food and Function, 0, , .	4.6	1
74	Analysis of phenolic, polysaccharidic and lipidic fractions of mushrooms from northeast Portugal. Planta Medica, 2012, 78, .	1.3	0
75	Comparison between Different Extraction Methods in the Recovery of Bioactive Molecules from Melissa officinalis L. under Sustainable Cultivation: Chemical and Bioactive Characterization. , 2022, 11, .		0