
Debasis Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10643372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent metal–organic frameworks as explosive sensors. Dalton Transactions, 2014, 43, 10668-10685.	3.3	344
2	Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 2015, 48, 211-219.	15.6	330
3	Metal–organic framework with optimally selective xenon adsorption and separation. Nature Communications, 2016, 7, ncomms11831.	12.8	325
4	Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth and Design, 2011, 11, 4704-4720.	3.0	192
5	Xenon Gas Separation and Storage Using Metal-Organic Frameworks. CheM, 2018, 4, 466-494.	11.7	182
6	Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 7007-7010.	13.7	179
7	Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coordination Chemistry Reviews, 2018, 358, 125-152.	18.8	175
8	lodine Adsorption in Metal Organic Frameworks in the Presence of Humidity. ACS Applied Materials & Interfaces, 2018, 10, 10622-10626.	8.0	144
9	A Calcium Coordination Framework Having Permanent Porosity and High CO ₂ /N ₂ Selectivity. Crystal Growth and Design, 2012, 12, 2162-2165.	3.0	127
10	Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8, 2373-2380.	7.4	121
11	Effective sensing of RDX via instant and selective detection of ketone vapors. Chemical Science, 2014, 5, 4873-4877.	7.4	112
12	Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence. Angewandte Chemie - International Edition, 2013, 52, 1692-1695.	13.8	97
13	Vapor phase detection of nitroaromatic and nitroaliphatic explosives by fluorescence active metal–organic frameworks. CrystEngComm, 2013, 15, 9745.	2.6	95
14	Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Crystal Growth and Design, 2011, 11, 2572-2579.	3.0	90
15	Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. Chemistry of Materials, 2016, 28, 1636-1646.	6.7	87
16	Lithium Based Metalâ^'Organic Framework with Exceptional Stability. Crystal Growth and Design, 2009, 9, 2500-2503.	3.0	85
17	Synthesis and Structural Characterization of Lithium-Based Metalâ~'Organic Frameworks. Crystal Growth and Design, 2009, 9, 4922-4926.	3.0	68
18	Effect of Ligand Structural Isomerism in Formation of Calcium Coordination Networks. Crystal Growth and Design, 2012, 12, 2460-2467.	3.0	60

DEBASIS BANERJEE

#	Article	IF	CITATIONS
19	Synthesis and Structural Characterization of a 3-D Lithium Based Metalâ^'Organic Framework Showing Dynamic Structural Behavior. Crystal Growth and Design, 2010, 10, 2801-2805.	3.0	55
20	Redoxâ€Active Metal–Organic Composites for Highly Selective Oxygen Separation Applications. Advanced Materials, 2016, 28, 3572-3577.	21.0	55
21	Anionic Gallium-Based Metalâ^'Organic Framework and Its Sorption and Ion-Exchange Properties. Inorganic Chemistry, 2011, 50, 208-212.	4.0	53
22	Noria: A Highly Xe‧elective Nanoporous Organic Solid. Chemistry - A European Journal, 2016, 22, 12618-12623.	3.3	48
23	Synthesis, Structures and Photoluminescence Properties of a Series of Alkaline Earth Metal-Based Coordination Networks Synthesized Using Thiophene-Based Linkers. Crystal Growth and Design, 2013, 13, 326-332.	3.0	44
24	Xe adsorption and separation properties of a series of microporous metal–organic frameworks (MOFs) with V-shaped linkers. Journal of Materials Chemistry A, 2017, 5, 16611-16615.	10.3	42
25	Solvothermal Synthesis and Structural Characterization of Ultralight Metal Coordination Networks. Crystal Growth and Design, 2010, 10, 709-715.	3.0	32
26	Effect of ligand geometry on selective gas-adsorption: the case of a microporous cadmium metal organic framework with a V-shaped linker. Chemical Communications, 2013, 49, 7055.	4.1	31
27	Strongly luminescent inorganic–organic hybrid semiconductors with tunable white light emissions by doping. Journal of Materials Chemistry C, 2019, 7, 1484-1490.	5.5	30
28	Surface and Structural Investigation of a MnO _{<i>x</i>} Birnessite‶ype Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry - A European Journal, 2015, 21, 14218-14228.	3.3	29
29	Separation of C ₂ Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform. Comments on Inorganic Chemistry, 2015, 35, 18-38.	5.2	29
30	Direct Structural Identification of Gas Induced Gateâ€Opening Coupled with Commensurate Adsorption in a Microporous Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 11816-11825.	3.3	27
31	Direct structural evidence of commensurate-to-incommensurate transition of hydrocarbon adsorption in a microporous metal organic framework. Chemical Science, 2016, 7, 759-765.	7.4	24
32	Temperature dependent structure formation and photoluminescence studies of a series of magnesium-based coordination networks. Inorganica Chimica Acta, 2013, 394, 452-458.	2.4	20
33	Simultaneous <i>in Situ</i> X-ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials. Journal of Physical Chemistry C, 2016, 120, 360-369.	3.1	18
34	Lanthanide metal-organic frameworks based on a thiophenedicarboxylate linker: Characterization and luminescence. Solid State Sciences, 2013, 15, 36-41.	3.2	16
35	A magnesium–lithium heterometallic coordination network. Inorganic Chemistry Communication, 2011, 14, 741-744.	3.9	9
36	Synthesis, characterization, and luminescence properties of magnesium coordination networks synthesized using an isophthalate linker. Polyhedron, 2012, 37, 42-47.	2.2	6

#	Article	IF	CITATIONS
37	Alkaline Earth Metal-Based Metal-Organic Frameworks: Synthesis, Properties, and Applications. , 0, , 73-103.		6
38	Poly[(μ4-adamantane-1,3-dicarboxylato-κ5O1:O1â€2:O3,O3â€2:O3â€2)(μ3-adamantane-1,3-dicarboxylato-κ a layered coordination polymer. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, m335-m337.	501,01â‡ 0.4	€²:O3,O3′:(4
39	XRD-DSC: a screening tool for identifying effective MOFs for selective gas sorption from humid gas streams. Powder Diffraction, 2019, 34, 3-12.	0.2	2
40	Innentitelbild: Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence (Angew. Chem. 6/2013). Angewandte Chemie, 2013, 125, 1640-1640.	2.0	0