Tao Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1064301/publications.pdf Version: 2024-02-01

TAO XIE

#	Article	IF	CITATIONS
1	Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments. Energy, 2022, 238, 121781.	4.5	9
2	Enhanced performance of airfoil-based piezoaeroelastic energy harvester: numerical simulation and experimental verification. Mechanical Systems and Signal Processing, 2022, 162, 108065.	4.4	26
3	Study on different underwater energy harvester arrays based on flow-induced vibration. Mechanical Systems and Signal Processing, 2022, 167, 108546.	4.4	18
4	Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration. Energy, 2022, 241, 122933.	4.5	9
5	Performance investigation of piezoaeroelastic energy harvester with trailing-edge flap. Sensors and Actuators A: Physical, 2022, 334, 113345.	2.0	5
6	Equivalent circuit modeling and analysis of aerodynamic vortex-induced piezoelectric energy harvesting. Smart Materials and Structures, 2022, 31, 035009.	1.8	7
7	A Deep Feature Aggregation Network for Accurate Indoor Camera Localization. IEEE Robotics and Automation Letters, 2022, 7, 3687-3694.	3.3	12
8	PANet: A Pixel-Level Attention Network for 6D Pose Estimation With Embedding Vector Features. IEEE Robotics and Automation Letters, 2022, 7, 1840-1847.	3.3	6
9	A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations. Mechanical Systems and Signal Processing, 2022, 171, 108963.	4.4	56
10	Stress superposition effect in ultrasonic drawing of titanium wires: An experimental study. Ultrasonics, 2022, 125, 106775.	2.1	5
11	Enhanced performance of piezoelectric energy harvester through three serial vibrators. Journal of Intelligent Material Systems and Structures, 2021, 32, 1140-1151.	1.4	17
12	Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108866.	2.5	15
13	A method for investigating aerodynamic load models of piezoaeroelastic energy harvester. Journal of Sound and Vibration, 2021, 502, 116084.	2.1	10
14	A new sensor inspired by the lateral-line system of fish using the self-powered d33 mode piezoelectric diaphragm for hydrodynamic sensing. Mechanical Systems and Signal Processing, 2020, 141, 106476.	4.4	19
15	Vortex-induced swing (VIS) motion for energy harvesters and flowmeters. Applied Physics Letters, 2020, 117, .	1.5	14
16	Enhancing Flow Field Performance of a Small Circulating Water Channel Based on Porous Grid Plate. Applied Sciences (Switzerland), 2020, 10, 5103.	1.3	4
17	Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration. Micromachines, 2020, 11, 725.	1.4	11
18	Identification and Attitude Estimation of Intelligent Welding Special-shaped Tubes Based on Two-Channel Convolutional Neural Network. , 2020, , .		0

#	Article	IF	CITATIONS
19	Visual Robot Relocalization Based on Multi-Task CNN and Image-Similarity Strategy. Sensors, 2020, 20, 6943.	2.1	5
20	Finite Element Analysis on Ultrasonic Drawing Process of Fine Titanium Wire. Metals, 2020, 10, 575.	1.0	8
21	An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 2020, 198, 117287.	4.5	45
22	An Automatic Bearing Fault Diagnosis Method Based on Characteristics Frequency Ratio. Sensors, 2020, 20, 1519.	2.1	23
23	Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration. Energies, 2020, 13, 3101.	1.6	26
24	Insights of Hysteresis Behaviors in Perovskite Solar Cells from a Mixed Drift-Diffusion Model Coupled with Recombination. Photonics, 2020, 7, 47.	0.9	13
25	Nonlinear Dynamic Analysis of Rotor-Bearing-Pedestal Systems With Multiple Fit Clearances. IEEE Access, 2020, 8, 26715-26725.	2.6	9
26	Active Control for Wall Drag Reduction: Methods, Mechanisms and Performance. IEEE Access, 2020, 8, 7039-7057.	2.6	24
27	Modeling and Experimental Study on the Micro-Vibration Transmission of a Control Moment Gyro. IEEE Access, 2019, 7, 80633-80643.	2.6	8
28	Health Monitoring on the Spacecraft Bearings in High-Speed Rotating Systems by Using the Clustering Fusion of Normal Acoustic Parameters. Applied Sciences (Switzerland), 2019, 9, 3246.	1.3	15
29	Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations. Energy, 2019, 187, 115983.	4.5	34
30	A Method for Reducing the Drag of the Ship Shaped Wall by Using Piezoelectric Ceramic Vibrators. IEEE Access, 2019, 7, 13295-13303.	2.6	2
31	Capturing Flow Energy from Ocean and Wind. Energies, 2019, 12, 2184.	1.6	41
32	A curved panel energy harvester for aeroelastic vibration. Applied Energy, 2019, 249, 58-66.	5.1	70
33	A New Self-Powered Sensor Using the Radial Field Piezoelectric Diaphragm in d33 Mode for Detecting Underwater Disturbances. Sensors, 2019, 19, 962.	2.1	13
34	Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy, 2019, 172, 134-140.	4.5	84
35	270-degree arc-shaped piezoelectric energy converter in uniflow fluid environment. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012026.	0.3	3
36	Modeling of nonlinear dynamic characteristics and experimental study of piezoelectric energy harvesters with a panel type structure. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012076.	0.3	0

#	Article	IF	CITATIONS
37	Modeling and simulation of the structural and electrical characteristics for a polarized piezoelectric sensor actuator. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012053.	0.3	0
38	A new integrated piezoelectric sensactor for eliminating the electric field interference. Measurement: Journal of the International Measurement Confederation, 2019, 134, 440-450.	2.5	4
39	Experimental Study on Fine Titanium Wire Drawing with Two Ultrasonically Oscillating Dies. IEEE Access, 2018, 6, 16576-16587.	2.6	7
40	Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics, 2018, 83, 60-67.	2.1	40
41	Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration. Micromachines, 2018, 9, 667.	1.4	21
42	A longitudinal-torsional composite ultrasonic vibrator with thread grooves. Ceramics International, 2017, 43, S214-S220.	2.3	23
43	Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms. Micromachines, 2017, 8, 189.	1.4	36
44	A Piezoelectric Energy Harvester with Bending–Torsion Vibration in Low-Speed Water. Applied Sciences (Switzerland), 2017, 7, 116.	1.3	27
45	Research on a Composite Power-Superimposed Ultrasonic Vibrator for Wire Drawing. Applied Sciences (Switzerland), 2016, 6, 32.	1.3	4
46	A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms. Applied Sciences (Switzerland), 2016, 6, 10.	1.3	66
47	Energy-Harvesting Performances of Two Tandem Piezoelectric Energy Harvesters with Cylinders in Water. Applied Sciences (Switzerland), 2016, 6, 230.	1.3	33
48	Numerical Study of the Aerodynamic Response and Energy Harvesting of Polyvinylidene Fluoride Piezoelectric Flags in a Uniform Flow. Journal of the Chinese Chemical Society, 2016, 63, 545-552.	0.8	2
49	Design and Fabrication of a Skew-Typed Longitudinal-Torsional Composite Ultrasonic Vibrator for Titanium Wire Drawing. IEEE Access, 2016, 4, 6749-6756.	2.6	9
50	A novel method for improving the energy harvesting performance of piezoelectric flag in a uniform flow. Ferroelectrics, 2016, 500, 283-290.	0.3	10
51	Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration. International Journal of Advanced Manufacturing Technology, 2016, 83, 645-655.	1.5	38
52	A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever with a Bicylinder in Water. Applied Sciences (Switzerland), 2015, 5, 1942-1954.	1.3	57
53	A piezoelectric energy harvester with vortex induced vibration. , 2015, , .		0
54	A new piezoelectric ceramic longitudinal–torsional composite ultrasonic vibrator for wire drawing. Ceramics International, 2015, 41, S625-S630.	2.3	69

#	Article	IF	CITATIONS
55	A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension. Ceramics International, 2015, 41, S768-S773.	2.3	123
56	Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex. Ceramics International, 2015, 41, S763-S767.	2.3	73
57	A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms. Journal of Zhejiang University: Science A, 2014, 15, 711-722.	1.3	45
58	Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes. Smart Structures and Systems, 2014, 14, 247-266.	1.9	14
59	A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. Journal of Zhejiang University: Science A, 2013, 14, 890-897.	1.3	36
60	New Electromechanical Coupling Model and Optimization of an Electromagnetic Energy Harvester. Ferroelectrics, 2013, 450, 66-73.	0.3	5
61	A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester. Ferroelectrics, 2013, 450, 57-65.	0.3	29
62	A new model of the antifriction effect on wiredrawing with ultrasound. International Journal of Advanced Manufacturing Technology, 2012, 63, 1047-1056.	1.5	13
63	An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system. Journal of Zhejiang University: Science A, 2012, 13, 526-537.	1.3	24
64	Mathematical Modeling and Experimental Verification of the Radial Stiffness for a Wire Race Ball Bearing. Applied Mechanics and Materials, 2011, 120, 343-348.	0.2	1
65	Design and experiment of multiple piezoelectric bimorphs for scavenging vibration energy. International Journal of Applied Electromagnetics and Mechanics, 2010, 34, 265-275.	0.3	13
66	A simple approach for determining the preload of a wire race ball bearing. Journal of Zhejiang University: Science A, 2010, 11, 511-519.	1.3	1
67	Modeling and Improvement of a Cymbal Transducer in Energy Harvesting. Journal of Intelligent Material Systems and Structures, 2010, 21, 765-771.	1.4	24
68	Modeling and simulation on the contact deformation distributionin a wire race ball bearing. , 2009, , .		0
69	Resonant frequencies of a piezoelectric drum transducer. Journal of Zhejiang University: Science A, 2009, 10, 1313-1319.	1.3	3
70	Energy harvesting with a slotted-cymbal transducer. Journal of Zhejiang University: Science A, 2009, 10, 1187-1190.	1.3	11
71	Energy harvesting with piezoelectric cantilever. , 2008, , .		4

72 Investigations on the effects of ultrasonic vibrations in the wire drawing. , 2008, , .

2

#	Article	IF	CITATIONS
73	Design and fabrication of a linear ultrasonic motor using push-pull type L-B hybrid Langevin transducer with single foot. , 2008, , .		7
74	A new method for determining the preload in a wire race ball bearing. Tribology International, 2007, 40, 869-875.	3.0	14
75	Novel approach for determining the optimal axial preload of a simulating rotary table spindle system. Journal of Zhejiang University: Science A, 2007, 8, 812-817.	1.3	2
76	Wavelet network solution for the inverse kinematics problem in robotic manipulator. Journal of Zhejiang University: Science A, 2006, 7, 525-529.	1.3	6